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ABSTRACT 

Simulation Based Modeling of the Elastic Properties  
of Structural Wood Based Composite Lumber 

 
Laszlo Bejo 

 
 
The importance of wood-based composite lumber is increasing in the US market 

for construction materials. Manufacturers of such composites strive to make their 
products more competitive by increasing their value. This dissertation describes the 
development of simulation models that can aid these efforts by estimating the elastic 
characteristics of composite lumber products. The study included the assessment of the 
orthotropic mechanical properties of the raw material, the effect of densification it 
experiences during the hot-pressing procedure, and the geometric structure of the 
composites. Using the results of these investigations, computer models were created 
based on principles of deterministic and stochastic simulations. Generated elastic 
parameters were validated against experimentally measured MOE values. Reasonably 
good agreement between the simulated and actual elastic constants confirmed the 
usefulness of the developed models. The simulations can be used to explore the 
characteristics of composite beams with innovative designs or containing new raw 
materials before they enter the prototype phase of their development. 
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1 INTRODUCTION 

Before the 20th century, wood was the almost exclusive building material of 

residential and commercial structures in North America. Abundant natural resources 

provided ample raw material for dams, bridges, log houses, etc. By the turn of the century 

the situation had changed, and the finiteness of these resources became apparent. The 

concept of light frame building has evolved, through balloon framing to the more 

contemporary platform framing used today in residential construction. 

Floors and walls in light frame structures typically consist of a network of load-

bearing elements (frame) covered to provide a platform surface (sheathing.) Historically, 

the raw material for both frame and sheathing was solid sawn lumber. In sheathing 

applications, wood based composite panels like plywood and – later – flakeboard, were 

soon substituted for solid wood. These products represent a fuller utilization of the 

available logs, and have other advantages in sheathing uses, such as their larger 

dimensions, improved uniformity of characteristics and their load-bearing capacity in two 

directions. 

The replacement of solid wood in framing applications was more difficult. The 

favorable specific mechanical properties of wood make it a tough competitor for 

inorganic materials (steel, concrete) and wood based composite products. It was not until 

the last three decades of the 20th century that the first effective composite substitute 

emerged in the US market. Presently, there are four types of wood based composites used 

for framing: Laminated Veneer Lumber (LVL), Laminated Strand Lumber (LSL) and 

Parallel Strand Lumber (PSL), and engineered wood I-Joists. 
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Although structural composite lumber products gained a substantial share of the 

market for construction lumber, their production cost is relatively high. Despite 

manufacturers' efforts, the complex production procedure and the price of adhesives used 

severely limit price reduction opportunities. The only feasible alternative is increasing the 

perceived value of these products. Manufacturers are constantly seeking alternative raw 

materials and innovative designs to provide superior performance and consistency at the 

same cost. The goal of the present study was to aid these efforts through the development 

of simulation models that can be used to explore new designs or raw material sources in 

the manufacture of composite lumber products. 

 

1.1 Laminated Veneer Lumber (LVL) 

LVL is a structural lumber manufactured from veneers laminated into a panel 

with the grain of all veneers running in the same direction. The resulting material is 

usually 19 to 45 mm (3/4 to 1-3/4 in) thick, 0.6 to 1.2 m wide, and ripped to common 

lumber widths of 38 to 290 mm (1-1/2 to 11-1/2 in) or wider (Wood Handbook 1999). 

LVL is also known as Parallel Laminated Veneer (PLV) or  Press-Lam.  

The first laminated veneer structure of this type was proposed by Luxford (1944), 

for constructing high-strength wood aircraft members. The development of LVL for 

commercial use started in 1967 (Kunesh 1978.) Early studies typically used thick veneers 

(1/4 in or thicker) to construct and examine laminated structures (Koch 1967; FPL-Press-

Lam Research Team 1972, Bohlen 1972, Jung 1984.) Today, the majority of LVL is 

made by continuously laminating rotary-peeled, 3.2 ~ 2.5 mm (1/8 ~ 1/10 in) thick veneer 
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sheets. The traditional raw materials for LVL manufacture are coniferous species, like 

Douglas-fir (Pseudotsuga mensiesii (Mirb.) Franco) and southern pine (Pinus spp.) In the 

90's manufacturers started using yellow-poplar (Liriodendron tulipifera L.), too. (Vlosky 

et al. 1994.) 

LVL has several advantages compared to solid wood lumber (based on FPL-

Press-Lam Research Team 1972, Laufenberg 1983 and Vlosky et al. 1994): 

• Better yield. Research has shown that "using nominal or dressed dimensions and 

assuming lumber recovery from the core, LVL yielded more than 47 percent more 

than sawn lumber" (Laufenberg 1983.) Although this is not clearly manifested in 

product price, this represents an environmentally sounder practice, which, through 

environmental marketing, can provide competitive advantage, for the producer; 

• Mechanical properties. Anatomically inherent defects of solid wood (knots, sloping 

grain, etc.) are dispersed in LVL. This leads to increased strength and less variation in 

mechanical and physical properties. As a consequence, allowable stress values 

increase. In addition, non-destructive grading of veneers allows manufacturers to 

engineer the mechanical parameters of their product; 

• Weight. Because of the above facts, lighter beams can be used, which speeds up 

construction and alleviates job site injuries; 

• Size. Using a continuous process (most widespread presently), very long and deep 

beams can be produced at unchanged costs. The price of solid wood lumber increases 

with length and width, and availability of lumber is limited by the length and 

diameter of the saw logs; 

• Reduced job site waste; 

• Less frequent customer complaints. 
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Initially, LVL manufacturers aimed at the same market niche occupied by high 

quality lumber, endeavoring to keep prices competitive. In time it became apparent that 

LVL manufacture would remain expensive, but that the product can be superior to solid 

wood in many applications. Since that time, manufacturers are trying to establish their 

product as a value-added commodity both through R&D and marketing communication. 

LVL is a relatively new product, still at the 'growth' phase of its product life-cycle. 

Margins are still attractive, and production is likely to increase for a long time yet 

(Vlosky et al. 1994). 

 

1.2 Parallel Strand Lumber (PSL) 

PSL is a structural composite lumber made from wood strand elements with the 

wood fiber oriented primarily along the length of the member. The strands are coated 

with a waterproof structural adhesive, and fed, in a highly oriented manner, into a special 

press frame that uses microwave technology to cure the resin. The pressing operation 

results in high levels of densification. (Wood Handbook 1999) 

PSL has originally developed as an alternative way of utilizing veneers that – due 

to defects created during growth, storage or handling – did not qualify for plywood or 

LVL manufacture. Its physical and mechanical properties are, however, no worse (often 

better) than those of LVL. Mechanical properties of PSL are just as consistent as those of 

LVL (Kunesh 1978, Rammer and Zahn 1997). PSL is an increasingly popular composite 

lumber product, that is already a significant competitor of LVL and solid wood. 

Presently, there is only one manufacturer of this product. 
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The advantages and disadvantages of PSL are similar to those of LVL. Additional 

advantages include its appearance that many people find attractive. PSL is available in 

practically infinite length, while the only limitation on the cross-sectional dimension is 

the size of the press frame. LVL, in contrast, is typically available as 2x nominal cross-

sections, or smaller. 

 

1.3 Simulation modeling 

The purpose of applied sciences is to gain better understanding of real-world 

facilities or processes. The traditional and most straightforward method to achieve this is 

experimenting with the real-life entity. In some situations, however, such investigations 

entail serious difficulties. Examination of real-life entities is often very costly or too 

disruptive to the facility or process in question. In other instances, the investigation may 

be very time-consuming. The subject of the examination might not even exist; 

nevertheless, it might be important to study its characteristics and interaction with its 

hypothetical environment. In these cases, the investigator might create a simplified 

representation of the system to explore certain properties at lower costs, faster rates or 

without disrupting the original entity. This technique is called modeling. 

Researchers may use various types of models, depending on the task at hand. 

These include physical models, mathematical models with analytical solutions, and 

simulation models (Law and Kelton 1991.) Simulation models are useful if the entity to 

be modeled (called system) contains probabilistic elements. An example is a grocery 

store, where the number of customers arriving in a certain period of time, the number of 
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customers in the store at any time, supplies, etc. are not predictable with absolute 

certainty. 

Wood science applications include many areas – both in material science and 

process control – where simulation modeling can be serviceable. In recent years, 

scientists  employed simulation in various fields of study. These models include a wide 

range of applications, e.g. composite production processes (Kurse et al. 1997), hot 

pressing (Humprey and Bolton 1989, Lenth and Kamke 1996b), furniture rough mill 

operation (Anderson, 1983), laminated wood panel warping (Suchsland and McNatt 

1986), etc.  

Wood based composite production and properties involve many probabilistic 

components. Real-life experimentation with these composites, which involves altering 

manufacturing parameters of automated production lines, is very costly, time-consuming 

and disruptive. Simulation modeling is an excellent tool to investigate the manufacture, 

composition, physical and mechanical properties of these materials, and has been widely 

utilized by various researchers, as demonstrated in section 3.3.  
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2 OBJECTIVES AND DISSERTATION STRUCTURE 

2.1 Objectives 

The objective of the research described in this dissertation was to develop and 

validate simulation models that can estimate the mechanical properties of Laminated 

Veneer Lumber (LVL) and Parallel Strand Lumber (PSL). This included the following 

tasks: 

 

1. Building input databases for the model, including the orthotropic mechanical 

properties of the raw material and the parameters of composite geometry. 

2. Examining the effect of the manufacturing process on the constituents. 

3. Assessing the composites’ mechanical properties experimentally.  

4. Modeling the bending and orthotropic compression Modulus of Elasticity (MOE) of 

the composites using deterministic and stochastic simulation, and validating the 

models by comparing simulation results to the experimentally obtained values.  

 

2.2 Structure of the dissertation 

Chapter 3 summarizes the results of former investigations concerning the 

orthotropic mechanical properties of solid wood, the effect of the manufacturing practice 

on the constituents and the results of simulation studies that modeled the manufacture and 

properties of wood based composites. Chapter 4 provides background information that 

was used in exploring the orthotropic nature of solid wood’s mechanical properties, and 

provides the theoretical basis for the simulation models. 
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Chapter 5 introduces the materials and experimental methods used for the 

investigation of the mechanical properties of solid wood and those of LVL and PSL. It 

also describes the practice of assessing the composites’ geometric properties that were 

necessary for the prediction models. The results of these investigations are discussed in 

Chapter 6. 

Chapter 7 contains details of the developed models that predict the bending and 

compression MOE of the composite lumber products. This chapter includes the 

experimental validation of these models versus the experimentally measured properties of 

LVL and PSL, and demonstrates the capabilities of the models to predict the properties of 

composites that use alternative raw materials or design features. 

Finally, chapter 8 concludes the dissertation, and chapter 9 provides 

recommendations for further work that might improve and extend the predictive capacity 

of the models. 
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3 LITERATURE REVIEW 

3.1 Orthotropic strength and elasticity of solid wood 

3.1.1 Orthotropy of shear strength 

 True shear strength is one of the most difficult characteristics to measure. 

Creation of the pure shear stress state is a real challenge. Furthermore, the always present 

normal stresses combined with the inherent anisotropy of wood make the strength 

determination uncertain. Several publications have dealt with the improvement of shear 

strength assessment. One of the most comprehensive studies on this topic was provided 

by Yilinen (1963). The author investigated and critically reviewed several standardized 

shear testing methods. He concluded that the majority of block shear tests usually 

underestimate the true shear strength of solid wood. 

The standard ASTM block shear test has received much criticism for not 

providing pure shear load on the specimens. A number of researchers addressed this 

problem and some also proposed alternative solutions. Norris (1957) recommended the 

panel shear test, and Liu (1984) suggested the adaptation of a device, proposed by Arcan 

et al. (1978) for wood. The drawback of these tests is that they involve complicated 

specimen preparation and testing procedures. Lang (1997) proposed a new device for 

shear strength assessment of solid wood. The advantages of the described testing 

apparatus are the smaller specimen size, alleviation of normal stresses and acceptable 

agreement with shear strength values obtained by the ASTM method. 
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The majority of previous research projects have focused on the shear strength of 

solid wood parallel to the grain. Limited publications are available that address the 

anisotropy of wood in shear strength assessment.  

The first formula that described the strength anisotropy of wood is the well-

known Hankinson’s formula (Hankinson 1921). It was developed empirically from 

compression tests. This equation describes the effect of grain-orientation changes on the 

measured properties. Many researchers examined the validity of this formula finding that 

it fits experimental data well (Goodman and Bodig 1972; Bodig and Jayne 1982). 

However, the equation was deemed to provide adequate predictions only for compression 

and tension strength as well as moduli of elasticity. Kollman and Cote (1968) proposed 

some changes to the formula. Kollman (1934) used an experimentally determined power 

that provided better approximation of the direction dependent strength and elastic 

properties. The first attempt to describe the orthotropy of shear strength was made by 

Norris (1950). He applied the general Henky - von Mises theory to orthotropic materials. 

Although in his study the predicted shear strength values agreed reasonably well with 

experimental data for structural plywood, the approach has received criticism from others 

(Wu 1974; Cowin 1979). Over the decades, with the advancement of man-made 

composites, ample research has been devoted to explore the strength and elasticity of 

anisotropic materials. Many of these results and theories may be applied to wood with 

care. 

Ashkenazi (1978) used the tensor theory for describing the anisotropy of wood 

and wood-based composites. In an earlier work he measured the shear strength of pine at 

various grain angles (Ashkenazi 1959). His results were unusual in that shear strength 
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showed maximum values at approximately 15° grain orientation, rather than in the 

longitudinal direction. Cowin (1979) stated that a quadratic form of the Hankinson’s 

formula describes Ashkenazi’s data reasonably well. The proposed model, however, can 

not describe the shear strength maximum at 15° grain orientation. Liu and Floeter (1984) 

measured the shear strength of spruce at 0°, 30°, 60° and 90° grain angles with the special 

device described by Arcan et al. (1978) designed to provide uniform plane stress. Their 

results agreed well with the theory of Cowin (1979). 

Some other researchers incorporated the effect of ring orientation in their works. 

The experiment of Bendsten and Porter (1978) included ring-angle, but only as a 

blocking factor, its effect was not of interest. Okkonen and River (1989) examined the 

effect of radial and tangential ring orientation on the shear strength in the longitudinal 

direction. They concluded that Douglas-fir had higher strength when the orientation of 

the sheared plane was radial, while oak and maple were stronger in the tangential 

direction. Riyanto and Gupta (1996) tried to establish a relationship between ring angle 

and shear strength parallel to the grain. Using a completely randomized design, they 

found that ring angle had very little effect on the shear strength of Douglas-fir and 

Dahurian larch. Rather, the specific gravity, the percentage of latewood and the number 

of rings per inch were much more deterministic factors. Szalai (1994) provided an 

integrated approach that tackles both ring and grain angle orientation. A general equation, 

derived from tensor analysis, can determine the shear strength at any given ring and grain 

angle combination. 
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3.1.2 Orthotropy of compression strength and elasticity 

The orthotropy of uniaxial stresses like compression and tension have received 

more attention than did shear stresses, both because of their ease of assessment and 

importance in practical applications. Much research effort was concentrated in this area, 

but most of the works focused on the effect of grain angle or ring angle, separately. 

As mentioned in the previous section, the most well known model to describe the 

effect of sloping grain on compression properties is Hankinson’s formula (Hankinson 

1921). Radcliffe (1965) investigated the accuracy of the equation, comparing its 

predictions to theoretical values of MOE that were derived from the relationships of 

orthtotropic elasticity. He showed that Hankinson’s solution is quite accurate in the LR 

plane, while in the LT plane around 25° grain inclination it may underestimate the MOE 

by 30%. Other researchers also verified the validity of this model (Goodman and Bodig 

1972, Bodig and Jayne 1982). Kollmann and Cote (1968) suggested some modifications 

to the original formula, based on the results of Kollman (1934). Cowin (1979) gave a 

good overview of these developments, and concluded that the valid formula should be the 

one Hankinson originally proposed. Some published research works claimed that another 

version, the so-called Osgood formula, approximates better the effect of sloping grain 

than the Hankinson’s equation (Kim 1986, Bindzi and Samson 1995). The Osgood 

formula, that is also empirical, is given as follows: 

 ( ) ( )ϕϕϕ 222 cossinsin aqpq
pqm

+−+
=  [3.1] 

Where m, p and q are the compression properties at grain angles ϕ, 0° and 90°, 

respectively. Constant a is a species-specific coefficient that should be determined 
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experimentally. However, no extensive validation of this model was reported in the 

literature (Kim 1986).  

Transverse compression has received much attention, too. Bodig (1965), Kunesh 

(1968) and Bendsten et al. (1978) provided more in-depth analysis of the question. 

Ethelington et al. (1996) incorporated variation of ring orientation in their work, and 

concluded that it had significant effect on the compression strength perpendicular to the 

grain. 

The exact determination of the strength perpendicular to the grain is practically 

impossible because of the practical incompressibility of the wood substance.  The ASTM 

D 143 – 83 standard requires that the test shall be discontinued after 0.1 inch crosshead-

displacement. This procedure was developed to evaluate the reaction force supporting 

capacity of solid wood joists. Consequently, there is no standard testing method that 

regulates the exploration of orthotropy in compression. However, there are several 

theories for predicting the failure envelope of solid wood and/or wood-based composites. 

Usually these approaches are based on six-dimensional tensor analyses like the Tsai-Wu  

strength criterion (Tsai and Wu 1971) that was developed two decades ago for 

homogeneous, orthotropic materials such as glass or carbon fiber and epoxy composites. 

The fiber direction in these synthetic composites is better controlled and the materials are 

transversely isotropic (i.e., identical strength and elastic properties in any directions 

perpendicular to the fiber). Thus, such analyses can be successfully used in exploring the 

strength orthtotropy of relatively homogeneous materials as demonstrated through an 

analysis of paperboard by Suhling et al. (1985).   
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3.1.3 The orthotropy of tensile elasticity 

Tensile properties of wood are more difficult to assess than compression strength 

and elasticity. The difficulties are even greater when sloping grain is involved. Limited 

research has been done on the tensile orthotropy of wood. Gerhards (1988) examined the 

effect of sloping grain on the tensile strength of Douglas-fir. At small angle deviations 

(less than 20°) he found the modified Hankinson’s formula (Kollman and Cote 1968) to 

provide acceptable fit. In another work (Woodward and Minor 1988) that included the 

full grain orientation range, the authors found the same theory to work well, but provide 

worse prediction than a Hyperbolic formula. Pugel (1990) developed an angle-to-grain 

tensile setup for thin specimens. Tensile test results of Douglas-fir and southern pine, 

measured using his setup, showed reasonable agreement with the original Hankinson’s 

formula. These studies dealt with the tensile strength only.  

Nondestructive testing is a simple and inexpensive alternative to static tests. Its 

advantages are obvious: the specimen is not destroyed during the test, which is usually 

fast and cheap, and nondestructive evaluation is often much less complicated than the 

static test. Vibration methods are particularly suitable for quantitative, as well as 

qualitative evaluation of materials. The relationship of vibration properties to elastic 

characteristics was recognized as early as 1747 by Riccati. Researchers started to apply 

this relationship for wood in the early 1950’s (Pellerin 1965.)  

Vibration methods include two subtypes: transverse and longitudinal (stress-

wave) vibration. According to theory, measured transverse vibration frequency and wave 

propagation velocity are related to the bending and uniaxial MOE, respectively. Many 

studies verified these relationships experimentally, typically with excellent results. 
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Researchers also endeavored to find empirical correlation between vibration and strength 

properties. Many considered the damping characteristics of wood to be promising, but 

experiments were not invariably successful. Pu and Tang (1997) gave an excellent 

overview of the research conducted in this area. 

The application of static tension tests to veneers is especially limited due to their 

small thickness. The mechanical properties of veneer, can be very different from those of 

the wood it originated from, and assessment of veneer properties is sometimes desirable. 

This is an area where nondestructive testing (specifically, stress-wave timing) is very 

helpful. There are two areas where vibration testing of veneers can be particularly useful: 

1.) relating the mechanical properties of logs to those of the veneer peeled from them 

(Ross et al. 1999, Rippy et al. 2000), and 2.) veneer classification prior to Laminated 

Veneer Lumber manufacture, to engineer or improve the consistency of the product’s end 

properties (Koch and Woodson 1968, Jung 1982, Kimmel and Janiowak 1995, Shuppe et 

al. 1997.) The latter gained practical application, too, and a commercial tool is now 

widely used for classifying veneer sheets according to their stress-wave characteristics 

(Sharp 1985.) 

Other studies about veneer testing by stress-waves include that of Jung (1979), 

who presented a comprehensive study concerning stress-wave application on veneers. He 

examined the potential of this technique to detect knots and slope of grain, and 

investigated the effect of specimen size and different measurement setups. Hunt et al. 

(1989) correlated the tensile and stress-wave MOE of veneer, with acceptable results. 

Most recently, Wang et al. (2001) investigated the potential of two stress-wave 
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techniques to detect lathe checks and knots in veneer. Stress wave propagation 

parameters were sensitive of defects, when measuring perpendicular to grain. 

Few studies dealt with the effect of sloping grain on nondestructive testing 

parameters. Kaiserlik and Pellerin (1977) attempted to predict tensile strength of woods 

containing sloping grain. Armstrong et al. (1991) studied the effect of grain orientation 

on the wave-propagation velocity in various species. They concluded that, out of three 

equations, the modified form of the Hankinson formula (Kollman and Cote 1968) 

provided best fit to the data, but warned that some limitations may question its 

appropriateness for some applications. Divos et al. (2000) used ultrasonic propagation 

velocity and attenuation parameters to predict grain slope. They showed that both 

ultrasonic velocity and the magnitude of the first received amplitude are good indicators 

of grain deviation. Attenuation is better to detect small grain deviations, while 

propagation velocity – which is a function of the direction-dependent MOE – is a better 

estimator for the entire grain orientation range. Jung (1979) examined (among other 

factors) the effect of sloping grain on the stress-wave characteristics of veneers. He found 

that at small angles there is little change in stress-wave velocity, but at slightly higher 

orientations velocity decreases rapidly. There appears to be no study in the literature that 

uses vibration methods to describe the relationship between MOE and grain alignment in 

wood. 
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3.2 Modification of constituents’ properties during manufacture 

The raw materials of wood based composites undergo a number of changes during 

processing. These effect the mechanical properties of the constituents.  

Veneer peeling affects the mechanical properties of the constituents through 

splitting and checking on the backside of the veneer. Further modification occurs during 

glue application and hot pressing. Some of the adhesive applied to the constituent will 

penetrate its surface layer, and modify its mechanical properties.  

Bodig and Jayne (1982) gave a detailed description of the phenomenon called 

polymeric impregnation. Based on the results of Langwig et al. (1968) and Bryant (1966) 

they concluded that phenolic resin tends to increase bending and compression properties, 

but reduce tension strength, toughness and dynamic properties. Application of the law of 

mixtures to impregnated wood, taking the void volume in account, yields an equation that 

shows that the effect of the polymer on the MOE of the compound is additive. 

Experimental validation showed this theory to provide reasonable prediction for 

impregnated wood (Siau et al. 1968, Taneda et al. 1971). 

In composite simulation, glue penetration has a double role. The more adhesive 

the constituents take up, the less remains for bonding. On the other hand, impregnation 

influences the mechanical properties, as discussed above. Triche and Hunt (1993) 

demonstrated the latter effect by a finite element study that incorporated a wood-resin 

interface layer, which increased MOE. The model predicted experimental tensile MOE 

and ultimate stress reasonably well. 
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Densification is another consequence of hot pressing. Establishing close contact 

between the constituents – which is imperative for good bonding – requires pressure 

application. The necessary pressure is higher in randomly aligned composites, and lower, 

but still significant in systematically aligned ones. (Dai and Steiner 1993). In either case, 

some densification results. 

The effect of densification on mechanical properties is twofold. The original bulk 

of cell wall material is squeezed into a smaller volume. This means that there will be 

more material to resist stresses, which will improve both the strength and the elastic 

properties of the constituent. Xu and Suchsland (1998b) modeled the MOE of composite 

panels based on this assumption. According to their model, MOE improves 

proportionally to density-increase. 

Relationships between density and MOE of solid wood seem to bear out the 

above theory. Bodig and Jayne (1982) presented the following equation to predict 

mechanical properties from density: 

 baY ρ= , [3.2] 

where Y is the characteristic in question, ρ is the density and a and b are experimental 

constants. Markwardt and Wilson found b to be one for bending and compression MOE. 

In another study (Bodig and Goodman 1972), for the MOE of softwood and hardwood in 

different anatomical directions, b values differed from, but were close to, unity. 

On the other hand, fractures and inelastic strains may develop within the 

elements, reducing their inherent strength and stiffness (Palardy et al. 1989). This 

alleviates the above mentioned improvement, but the overall effect tends to be positive, 

especially at higher levels of densification (Price 1976). Geimer et al. (1985) analyzed 
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the effect of densification using various pressing parameters, using micromechanical 

tools. They concluded that high press temperatures cause less damage in the veneer, 

because of plastification, and are more favorable in terms of mechanical properties. 

 

3.3 Wood composite modeling 

Constituent manufacture, mat formation and consolidation are complex 

procedures that involve variables that, despite efforts to control them, are influenced by 

several random factors. The resulting products have many random characteristics, as 

well. It is not surprising, that many researchers used various modeling techniques to 

further the understanding of wood-based composites. 

Modeling physical and mechanical properties requires a thorough understanding 

of the spatial structure of the composites. An early simulation model described the 

structure of paper as consisting of several layers of fibers and interfibrillar spaces or 

pores (Kallmes and Corte 1960, 1961). This work provided a basis to developing a 

mathematical model that describes randomly packed, short-fiber-type wood composites 

(Steiner and Dai 1993, Dai and Steiner 1994a, 1994b). This simulation is based on the 

observation that flake positions in a layer are driven by Poisson processes. As a 

consequence, point mass density and overall mat thickness will have Poisson 

distributions, too. The results of this investigation were used in a Monte Carlo simulation 

program that can model different types of mats, and analyze them for various important 

geometric characteristics (Lu et al. 1998). The program can also determine the effect of 

sampling zone size on the measured density distribution. Harris and Johnson (1982) dealt 
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with the characterization of flake orientation in flakeboards. They pointed out that 

unbounded distributions are not appropriate for this purpose and suggested a bounded 

distribution to provide angles between 0 and π. 

Some researchers attempted to provide detailed explanation and simulate certain 

aspects of particle mat behavior during consolidation. Suchsland (1967) summarized the 

mat formation, heat- and moisture movement and stress-behavior of particleboard mats. 

He provided an explanation for the formation of horizontal and vertical density 

distributions, and  showed how pressing parameters influence the latter. Humprey and 

Bolton (1989) made an in-depth analysis of the multidimensional unsteady state heat and 

moisture transfer during hot pressing. They built a model, based on a modified finite 

difference approach, that could predict temperature, moisture content, vapor pressure and 

relative humidity in different layers of a mat. 

Several works dealt with the compression behavior of flake mats throughout the 

pressure cycle. Dai and Steiner (1993) developed a theoretical model to describe the 

compression response of randomly formed wood flake mats. Their predictions agreed 

with experimental results reasonably well. Two further models, using somewhat different 

approaches to mat structure and stress-strain relationship characterization, provided 

improved estimation. One of these incorporated the effect of flake bending during press 

closure (Lang and Wolcott 1996a, 1996b) while the other used theories of cellular 

materials  (Lenth and Kamke 1996a, 1996b.) It has been proposed that a combination of 

these two models characterizes the entire stress-strain curve best. 

Physical and mechanical properties of wood based composites are closely related 

to density. Vertical and horizontal density distribution (VDD and HDD) generated much 
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research interest. Suchsland and Xu (1989, 1991) built physical models to examine the 

effect of HDD on thickness swelling and internal bond strength. They concluded that the 

durability of flakeboard is substantially effected by the severity of the horizontal density 

distribution. Xu and Steiner (1995) presented a mathematical concept for quantifying the 

HDD. Another study (Wang and Lam 1998) linked a simulation program with an 

experimental mat through a robot system that deposited flakes in the simulated positions. 

Simulated and actual HDD showed good agreement.  

Harless et al. (1987) created a very comprehensive simulation model that can 

regenerate the VDD of particleboard as a function of the manufacturing process. Other 

research in this area includes characterization of VDD using a trigonometric density 

function (Xu and Winistorfer 1996), and a simplified physical model to examine how the 

number of flakes, face flake moisture content and press closing time affects VDD (Song 

and Ellis 1997.)  

Zombori (2001) created a series of linked simulation and finite element models 

that could, in turn, recreate the geometric structure, compression behavior, and heat and 

mass transfer of oriented strand board. These models could predict the inelastic stress-

strain response, environmental conditions, moisture content and density at different 

points within the panel. His results – some of which are applicable to other composites, 

like particleboard, too – were in reasonable qualitative agreement with reality, although 

their quantitative accuracy was sometimes questionable. 

Simulation studies have dealt with the mechanical properties of wood based 

composite panels. Most of these models were created by Xu and Suchsland. They 

simulated the linear expansion of particleboard (1997), followed up by a study discussing 
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the effect of out-of-plane orientation (1998a). In these works, they made use of the off-

axis MOE, determined by the Hankinson formula. They used the findings of these studies 

in a later model (1998b), to simulate the uniaxial MOE of composites with uniform VDD, 

based on the total volumetric work. This model accounted for the effect of densification 

and that of particle orientation, and the authors made observations about the effect of 

other factors (like glueline quality and manufacturing treatments) on the simulation. Xu 

(1999) improved this simulation to model the effect of vertical density profile on the 

bending MOE of composites, using the laminate theory. He described the VDD by the 

trigonometric function provided by Xu and Winiesdorffer (1996), and found that 

maximum MOE results when peak density is some distance from the surface. The 

validity of this observation, however, depends on the validity of the VDD function used. 

The above model was applied to evaluate the effect of percent alignment and shelling 

ratio on the MOE of OSB (Xu 2000) Simulation results agreed well with experimental 

data in literature. 

Triche and Hunt (1993) modeled parallel-aligned wood strand composites using 

finite element analysis. They created small scale parallel-aligned strand composites, that 

can be regarded as physical models of LVL or PSL. The applied finite element model 

accounted for the effect of densification, adhesive penetration and crush-lap joints, and 

estimated the tensile strength and MOE of the specimens with excellent accuracy. In a 

very recent study, Barnes (2001) modeled the strength properties of oriented strand 

products. He introduced the concept of stress transfer angle to assess the effect of strand 

length and thickness on the mechanical properties of composites. He found good 
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agreement between experimental and model-predicted MOE, MOR and tensile strength 

values. 

Wood based composite lumbers, such as LSL, LVL or PSL, are relatively new 

products that generated less research interest than did composite panels. Many findings of 

the above papers can be applied to these products with care. In the meantime, available 

literature does not seem to contain simulation studies that are directed specifically 

towards modeling the geometric structure and mechanical properties of these composites. 
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4 THEORETICAL BACKGROUND 

4.1 Orthotropic strength and elasticity 

4.1.1 Orthotropy of shear strength 

The orthotropic nature of solid wood is usually depicted in a three-dimensional 

Cartesian coordinate system as shown on Figure 4.1. The principal directions of the 

material coordinate system are noted as L, R and T, longitudinal, radial and tangential 

directions, respectively. If an aligned global coordinate system (xi; i=1,2,3) is 

θ 

ϕ L(x1) 

T(x3) 

R(x2) 

x3’ 

x1’ 

x2’ 

Figure 4.1 – The orthotropy of solid wood shown in the principal material and global 
coordinate systems. Interpretation of grain angle (ϕ) and ring angle (θ) 
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systematically rotated around the R and L axes, the angles between the axes of L, R, T and 

xi’ (i=1,2,3) systems correspond to the grain and ring orientation of solid wood relative to 

the global coordinate system as marked on Figure 4.1. Note that the x1’x3’ plane is 

always parallel to the grain. If shear forces are acting in this plane and the direction of the 

applied forces is x1’, the orthotropy of shear strength can be investigated as a function of 

grain and ring angle. Using the described rotation, block shear specimens can be 

machined and tested. Such specimens are shown on Figure 4.2 representing the shear 

strength (τ) measurements in the principal material directions. The first subscript of τ 

marks the direction normal to the sheared plane while the second denotes the direction of 

shear forces. Specimens on Figure 4.2 a and b represent the standard shear application 

parallel to the grain, while shear strength measured on specimens c and d are sometimes 

referred to as rolling shear of solid wood. 

Because of the inherent duality of shear stresses, the failure of the specimens may 

not manifest in the theoretically sheared plane. Furthermore, the unavoidable normal 

stresses may induce and propagate cracks along the weakest interface within the volume 

of the specimen. Such out-of-sheared-plane failure may occur with certain grain and ring 

angle combinations at the earlywood-latewood boundary or along the ray tissues. 

Consequently, the experimentally determined values can be considered as apparent shear 

strength only. 
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Figure 4.2 – The applied shear forces in the principal anatomical planes and the notation 
of corresponding shear stresses. a, b – traditional shear tests, parallel to the grain;  

c, d – rolling shear 

τTL

τTR

τRL

τRT
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c. d.

b.
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MODELS PREDICTING THE ORTHOTROPY OF SHEAR STRENGTH 

THE ORTHOTROPIC TENSOR THEORY  

In a comprehensive work Szalai (1994) used the orthotropic tensor theory to 

describe the direction dependent strength and elasticity of wood. Based on Ashkenazi’s 

(1978) strength criteria he applied a four-dimensional tensor approach to predict the shear 

strength of wood in any oblique plane and direction of shear forces. Substituting the 

tensor components with the appropriate strength values and eliminating the zero 

components resulting from the constraint that shear is applied only in the planes parallel 

to the grain, the equation takes the following form: 
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where:  ϕ – grain angle; 

θ – ring angle; 
θ
ϕτ̂  – estimated shear strength at grain angle ϕ and ring angle θ ; 

τij – shear  strength in the main anatomical planes, (i = R,T ;  j = T,L) where  
i is the direction normal of the sheared plane and j is the direction of the 
applied load; 

°
°

45
90τ  – shear strength at 90° grain and 45° ring angle (ϕ = 90°, θ = 45°). 

Note that this solution requires four experimentally predetermined strength 

values: three obtained in the principal anatomical planes such as τRL, τTL and  τRT shown 

on Figure 4.2 a, b and c, respectively and a strength value at 90° grain and 45° ring angle 
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( °
°

45
90τ ). The advantages of this model are that it has a firm theoretical basis, uses only four 

experimentally determined data points for prediction, and is very straightforward. 

 

QUADRATIC MODEL 

Cowin (1979) demonstrated that the shear strength of wood may follow the 

Hankinson-type strength criterion in a quadratic form. Liu and Floeter (1984) used a 

tensor polynomial theory, developed by Tsai and Wu (1971), to re-derive the formula for 

predicting shear strength in a principal material plane of solid wood. The equation in 

general form is given as follows: 
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where:  ϕτ̂  – estimated shear strength at grain angle ϕ ; 

τ 0° – shear strength at grain angle ϕ = 0°; 

τ 90° – shear strength at grain angle ϕ = 90°. 

Like Szalai’s approach, this formula has a well-defined theoretical basis. 

However, it does not include the effect of ring orientation, and has been verified 

experimentally in the LT plane only, using Sitka spruce specimens. 

 

MODIFIED HANKINSON'S FORMULA  

Kollman (1934) modified the original Hankinson’s formula replacing 

the power 2, to which the trigonometric terms are raised, by an arbitrary power n: 
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The authors claimed that this equation provides better fit than the original 

Hankinson’s formula for predicting tensile strength and modulus of elasticity. Although 

this model is purely empirical, it has a capability to describe peak shear stresses at 

inclined grain, by using a higher power (i.e., n > 2). Beside the lack of theoretical basis, 

this model is probably very species specific and requires a significant database for 

accurate determination of the value of n. Like the quadratic formula, it can handle only 

fixed ring orientation in its present form.  

 

COMBINED MODELS 

So far, the orthotropic tensor theory was the only model that could handle both 

grain and ring angle changes. Researchers addressed the effect of ring orientation on the 

shear strength parallel to the grain and usually found it negligible. The apparent low 

degree of orthotropy of shear strength between the LT and LR main anatomical planes  

(i.e., τRL ≈ τTL) did not trigger extensive model development to describe the phenomenon. 

The only available model was published by Szalai (1994). It includes two equations 

derived from tensor analysis, as follows: 
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where:  θτ °0̂  – estimated shear strength at θ ring angle, ϕ = 0°; 
θτ °90ˆ  – estimated shear strength at θ ring angle, ϕ = 90°; 

and the other symbols are as given at Equation 4.1. 

Equation 4.4 approximates the shear strength of traditional, parallel to the grain 

specimens as a function of ring orientation. It requires two experimentally predetermined 

strength values. The rolling shear strength variations are given by Equation 4.5 where 

three predetermined strength values are needed. Note that τRT and τTR represent the 

maximum stresses (i.e., shear strength) values. Due to the duality, the stresses in these 

two directions are identical. However, this is not necessarily true for the strength values 

of wood because of the unpredictable failure mode, as discussed earlier. Although these 

equations have not been experimentally verified, theoretically they should describe the 

effect of ring orientation on the shear strength of orthotropic materials. 

One can realize that these equations can provide predetermined strength data for 

the quadratic model and for the modified Hankinson’s formula for predicting the effect of 

grain orientation. Consequently, combining Equations 4.4 and 4.5 with Equations 4.2 or 

4.3, we can obtain additional two models for estimating the orthotropy of shear strength 

as a function of grain and ring orientation. This combination for the quadratic model is 

given in a short-hand form as follows: 
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Furthermore, using the modified Hankinson's formula we obtain: 
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Figure 4.3 gives a graphical explanation of these combined models. Note that 

both of these approximations require five experimentally predetermined strength values 

and Equations 4.6 or 4.7 should be solved m times where m is the resolution, calculated 

as m = (1 + 90/ring angle increment). During this research these two models along with 

the orthotropic tensor theory (Equation 4.1) were fitted to experimental data and 

statistically analyzed.  

 

 

Figure 4.3 – Interpretation and the principle of prediction process of  
the combined models 
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4.1.2 Orthotropy of compression strength and elasticity 

4.1.2.1 Shear stresses in compression specimens  

Although wood is usually modeled as an orthotropic material, in reality it is 

cylindrically orthotropic. The inherent natural variability of wood coupled with the 

ambiguous definition of failure stresses in compression generates several difficulties in 

application of advanced failure theories. Furthermore, the compression strength 

determination of cross-grained wood blocks always depends on the size, shape, 

manufacturing precision (parallelism) and support conditions of the specimen. 

FRT FRL

Fmax

Fmax

FV

γ FN

LR

LT

90°

L
R

T
1

2
3

 A

Figure 4.4 – Internal force conditions of an oblique specimen under compression 



4   THEORETICAL BACKGROUND 33

Consider an ideal, cross-grained specimen for compression strength assessment in 

a global coordinate system, as shown in Figure 4.4, where the anatomical directions (L, R 

and T) are marked, as well. In an arbitrarily selected LT principal anatomical plane of the 

specimen, the compression force (Fmax) can be broken into a normal (FN) and an in-plane 

(FV) component. The area (A) of this inclined sectional surface can be approximated 

using trigonometric identities. FV can be represented as a resultant of FRL and FRT that 

induce traditional parallel to the grain shear stress and rolling shear, respectively, at 0° 

ring angle. If the ratio of FV to the sectional area of the specimen (FV/A) in the LT plane 

exceeds the shear strength ( Θ
ϑτ ) the specimen will fail in shear under compression. The 

subscripts, ϑ and Θ are the angles between FV and the direction of the fibers, and between 

the sheared and LT planes, respectively. For this particular case Θ = 0. Because several 

species have relatively low degree of shear orthotropy concerning the ring orientation, 

one can realize that shear failure is possible in any plane between LT and LR, if the 

induced shear stresses are large enough. In fact, off axis compression specimens have 

been used to evaluate the shear strength of Finnish pine in the LT and LR planes by 

Ylinen (1963). The relationship between shear and normal stresses for grain inclination 

range of 12° < ϕ < 32°  was given as follows: 

 τmax = 1/2σmax sin2ϕ  [4.8] 

One should note that this shear failure stress is biased by a compression stress (σq) 

normal to the plane of failure: 

 σq = σmax sin2ϕ , [4.9] 
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where σmax = σ1 the ultimate compression stress in the global coordinate system and ϕ is 

the grain angle.  

Experimental results of Ylinen (1963) showed that there is a consistent shear 

strength difference at the studied grain angles between the LR and LT planes. This 

indicates some interactions between grain and ring orientations. The ambiguous failure 

modes, coupled with the inherent natural variability of wood, allow the exploration of 

apparent strength only for particularly defined specimens. The size, the slenderness ratio 

of the specimen and the end conditions along with the existence or lack of lateral 

supports may affect the measured compression strength values. Furthermore, the 

determination of MOE in compression may be also biased by some of these conditions 

and the induced shear strain may affect the measured normal strain.  

The complexity of the failure phenomena, and the above-discussed problems 

make the predictions difficult and sometimes unreliable. However, some approaches that 

incorporate both the ring and grain angle variations can predict the orthotropic properties 

with reasonable accuracy. Such methods, that were verified and used during this research, 

are briefly discussed next. 

 

4.1.2.2 Models describing the orthotropic compression properties 

Selection criteria for models that can predict both MOE and strength were 

simplicity, minimum input requirements and validity at any grain (ϕ) and ring angle (θ) 

combinations. (The definition of ϕ and θ for purposes of compression strength and MOE 

determination is illustrated on Figure 4.5.) While the simplicity is not a vital problem 

because of the advances in computer science, models that needed all nine independent 
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elastic constants as inputs were not considered. Therefore, two procedures, a theoretical 

and an empirical, were selected.  

 

STRENGTH /STIFFNESS TENSOR THEORY 

Szalai (1994) provided an approach for calculating the normal strength of 

orthotropic materials in any direction. The equation can be derived from the four-

dimensional strength tensor by transforming the first element of the tensor, as described 

in APPENDIX A. After applying various strength criteria to the transformed element and 

eliminating the zero components, the equation takes the following form: 

 

Figure 4.5 – Interpretation of grain angle (ϕ) and ring orientation (θ) of the applied 
compression load 
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where:  θ
ϕσ̂  – predicted compression strength at grain angle ϕ and ring angle θ 

σi – compression strength in the principal anatomical directions ( i = L,R,T ); 
j

iσ  – compression strength at ϕ = i ; θ = j. 

The six strength values used in Equation 4.10 should be determined 

experimentally. Note that replacing the strength with the appropriate Ei or j
iE  values, the 

evaluation of orthotropic elasticity can be performed.  

 

THREE-DIMENSIONAL HANKINSON ‘S FORMULA  

Bodig and Jayne (1982) based their approach partly on the Hankinson formula, 

and on the observed compression strength pattern in the RT plane. According to the 

authors, the strength variation pattern in this plane consists of a linear and a sinusoidal 

component: 
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where:  θσ °90ˆ  – the predicted compression strength at 90° grain angle and ring angle θ ; 

K – empirical constant (0.2 for hardwoods). 

Other notations are as in Equation 4.10. 

After calculating this value for a certain ring angle, strength or MOE properties 

belonging to any grain angle at the given ring angle level can be obtained by substituting 

this value and σL into the Hankinson formula: 
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This empirical approach lacks the firm theoretical basis of the orthotropic tensor 

theory. In contrast, this method requires only three experimentally determined data points 

in the principal anatomical directions, and the calculation is no more difficult than the 

one used in the previous formula.  

 

4.1.3 Orthotropy of the dynamic elastic parameters  

Section 4.1.2.2 proposes two simple and effective models that describe 

compression strength and elasticity as a function of grain and ring angle. The same 

models pertain to the dynamic MOE of wood. In the present study, dynamic MOE was 

assessed as a function of grain angle (ϕ) only, in the LT plane. The two models presented 

in the previous section apply to this situation, as follows: 
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ORTHOTROPIC TENSOR THEORY 

Equation 4.10 presents the orthotropic solution for predicting compression or 

tensile strength and elasticity if both grain and ring angle are variable. For predicting the 

MOE in the LT plane only (i.e., θ = 0°), the formula reduces to the following: 
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where:  ϕÊ  – predicted MOE at grain angle ϕ ; 

EL, ET – experimentally determined MOE in the longitudinal and tangential 
directions; 

°
°

0
45E  – experimentally determined MOE in the LT plane, at ϕ = 45°. 

  

HANKINSON’S FORMULA  

For MOE in the LT plane, Hankinson’s Formula (1921) applies in the  

following form: 
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The advantages and disadvantages of the above two theories are the same as 

described in section 4.1.2.2, including the fact that, in this case, Hankinson’s formula 

uses one less value for prediction. 
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4.2 Prediction of MOE by stress-wave propagation 

The propagation velocity of longitudinal stress-waves in a material is directly 

related to the modulus of elasticity and the bulk density of the substance: 

 ρ2vED =  [4.15] 

where:  ED  – dynamic Modulus of Elasticity ( Pa ); 
v  – propagation velocity ( m/s ); 

ρ  – density ( kg/m3 ). 

The above equation holds true for so-called one-dimensional bodies only; that is, 

where the dimensions perpendicular to the wave propagation are at least one magnitude 

smaller than the wave length. In veneer sheets, where one cross-sectional dimension is 

larger than the wave length (two-dimensional body), the above equation is modified with 

the Poisson ratio: 

 ( )22 1 ijD vE υρ −=  [4.16] 

where:  υij  – Poisson ratio (i – propagation direction; j – perpendicular in-plane 
direction.) 

Unfortunately, reliable information concerning υij is seldom available. In past 

investigations, stress-wave MOE measured on veneer was invariably calculated using 

Equation 4.15. The results of Jung’s investigations (1979) indicate that the correction 

introduced in Equation 4.16 might be negligible in wood veneers. 

Because of the viscoelastic nature of wood, measured dynamic MOE depends on 

the rate of stress-development. During dynamic testing, stresses develop much faster than 

they do during static testing, and the difference between the resulting MOE values is 
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significant. For this reason, MOE calculated from longitudinal or transverse vibration 

characteristics is called dynamic MOE. Divos and Tanaka (2000) reported the following 

empirical equation to calculate the ratio of dynamic and static MOE: 
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where:  ED, ES  – dynamic and static MOE, respectively 

tD, tS – characteristic time of the dynamic and static MOE determination, 
respectively. 

 

4.3 Composite simulation 

Although the structure of the two composite types involved in this study is largely 

different, the basic principles used in their simulation are the same. The basis for 

simulating the bending elasticity of composites is the so-called laminate theory (Bodig 

and Jayne 1982): 

 
I

IEE iiΣ= , [4.18] 

where:  E, I – MOE  and 2nd order moment of inertia of the cross-section, 
respectively; 

Ei, Ii – MOE and moment of inertia of the ith layer, with respect to the 
composite’s neutral axis, respectively. 

This theory applies directly to layered composites like LVL. It is possible to adapt 

this concept to non- layered systems, such as PSL, as well. In this case, the above 

summation involves individual strands, rather than layers. 
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The simulation of Compression MOE is based on the calculation of the external 

work applied to a body and the internal energy stored therein. These quantities are equal 

in the linear elastic region. Xu and Suchsland (1998b) derived the following equation 

from this equality: 

 
V

VEE iiΣ= , [4.19] 

where:  E, V - MOE and total volume of the composite; 
Ei, Vi - MOE and volume of the ith constituent. 
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5 MATERIALS AND METHODS 

5.1 Orthotropic strength and elasticity 

5.1.1 Raw materials 

Orthotropic strength and elasticity determination of solid wood involved three 

Appalachian hardwood species. These species are either already used in composite 

manufacture, or are potential raw materials of structural composites.  

1. Quaking aspen (Populus tremuloides Michx.) is a light colored, light, soft, fast-

growing wood species. It is produced primarily in the Northeastern and Lake States, 

with some production in the Rocky Mountain States. (Wood Handbook 1999). Aspen 

is generally considered as a low-value wood, with low strength and elastic properties. 

Aspen material is cheap, and has excellent potential as a raw-material for value-added 

products, such as composite lumber. 

2. Red oak (Quercus rubra L.) is a heavy, hard, dark-colored wood species that is 

prevalent in the Eastern United States. It is used primarily as sawn lumber for 

furniture and cabinetry, flooring, moulding and millwork, and as decorative veneer. 

The mechanical properties of this species are typically good. Although red oak is 

harder to convert into veneer, it has good potential as composite raw-material, 

because of its ready availability and excellent mechanical parameters. 

3. Yellow-poplar (Liriodendron tulipifera L.) is a moderately light and soft, light 

colored hardwood. It is used mostly for furniture, musical instruments, structural 

components and raw material for plywood manufacture. This wood species is 

moderately weak mechanically. It is currently used for producing LVL and PSL 

structural lumber in the Eastern U.S. that has a plentiful resource of yellow-poplar. 
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5.1.2 Specimen preparation; physical properties 

Trees from the above species were harvested from the West Virginia University 

forest, located in Monongalia and Preston counties, and sawn into lumber, or peeled into 

3.2 mm (1/8 in) thick structural veneer. Prior to testing, specimens were conditioned to 

approximately 12% moisture content in a controlled environment (i.e., 21°C and 65% 

RH). Representative samples of specimens were prepared and tested for moisture content 

and specific gravity, according to ASTM D 4442-92, method A and ASTM D 2395-93, 

method A, respectively.  

 

5.1.3 Orthotropy of shear strength 

Figure 5.1 shows the specimen shape and target dimensions which differed from 

that specified by the ASTM D 143-94 standard. The double-notched shear blocks were 

prepared from blanks having varying ring and grain angle between 0° and 90° with 15° 

increments. Figure 5.2 demonstrates this specimen preparation practice. Test series 

included sets for all combinations of the above angles, for all the examined species. The 

sample size for these sets varied between six and fifteen. Shear forces were applied 

through a special device providing a single plane of shear within the specimens. The area 

of the sheared section was approximately 500 mm2 according to the target dimensions 

shown on Figure 5.1. Lang (1997) discussed the advantages of this alternative shear 

strength assessment and the description of the device in details. Figure 5.3 shows the 

principal and schematic of the shear testing apparatus along with the experimental setup. 

The justification of this alternative testing method lies in the smaller specimen  
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dimensions for which the grain and ring orientations are better controlled. Furthermore, it 

requires significantly less volume of raw material and waste is minimized when 

machining more than 1200 specimens. 

Tests were conducted using an MTS universal servo-hydraulic testing equipment 

mounted with 100kN ± 1 N load cell. The machine operated under displacement control 

with a rate of speed of 0.6 mm/min required by the ASTM D 143 - 94 standard.  
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Figure 5.1 – Dimensions of the double-notched shear specimens 
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Figure 5.2 – Schematic of the specimen manufacturing practice from prepared,  
straight-grained blanks 
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Figure 5.3 – Schematic of the shear testing apparatus and the experimental setup 
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5.1.4 Orthotropy of compression strength and elasticity 

Standard ASTM specimens (ASTM D 143 – 94, secondary method) were 

prepared from each species. The final dimensions (25 x 25 x 100 mm) were set after 

conditioning the blank materials.  

Specimen groups for compression strength and MOE determination were laid out 

similar to shear strength specimens. Ring and grain angles of the specimens varied 

between 0° and 90° with 15° increments. Ring angle is not defined at 0° grain orientation 

and its effect was disregarded at 15° grain angle. The experimental design, therefore, 

contained only one set of 10 specimens at both 0° and 15°. Figure 5.4 explains the 

specimen manufacturing practice.  
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Figure 5.4 – Compression specimen manufacturing practice and the interpretation  
of ϕ and θ 
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Figure 5.5 – Compression force application and the two-sided strain measurement 
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 Approximately 160 specimens by species provided 4 to 10 replications at the 

investigated variable (ϕ,θ) combination. The testing machine was the same as used for 

shear tests. Cross-head movement was under displacement control. Compression load 

application happened through a self-aligning block placed on top of the specimen. A 

computerized data acquisition system collected the load and displacement data in real 

time. Screw-mounted knife-edge pieces held in place the clip-on extensiometers that 

provided displacement data throughout the test, over a gauge length of 41 mm. Two 

gauges measured the deformations at the opposite, side-grained surfaces of the 

specimens. The obtained data pairs were averaged and the corresponding load-

displacement values were converted into stress-strain diagrams for further analyses. 

Figure 5.5 shows the experimental assembly. Other parameters of the procedure, 

including the speed of testing, agreed with the specifications of ASTM D 143 – 94 

standard. Load application continued until failure or until the densification plateau of 

horizontally grained (ϕ ≈ 90°) specimens were explicitly reached. The failure type of 

each specimen was visually assessed and recorded.   

 

5.1.5 Orthotropy of tensile elasticity 

Experimental material consisted of 3.2 mm (1/8 in) thick structural veneer sheets 

made of the three Appalachian hardwood species. The sheets were peeled and dried in a 

commercial structural composite plant.  

The equipment used for dynamic MOE determination was an ultrasonic device, 

developed by Hungarian researchers (Divos, 2000). The device consists of an ultrasonic 

timer and two piezoelectric accelerometers. The transducers use a 127 V, 45 kHz impulse  
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Figure 5.6 – Schematic of the ultrasonic testing equipment  
and the experimental setup 



 

5   MATERIALS AND METHODS 51

Time (µµµµs)
10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e 
sig

na
l (

V
)

-3

-2

-1

0

1

2

3

Response signal
Threshold

Measured Propagation Time

( The excitation signal is sent at 0 s )

that lasts for 30 µs. The impulses follow at 1s intervals. 3-4 MPa surface pressure 

between the transducers and the veneer sheets provides adequate contact, using sandpaper 

as coupling material.  

Figure 5.6 shows the schematic of the ultrasonic equipment and a picture of the 

experimental setup. The distance between the transducer and the receiver (i.e. 

measurement span) was 160 mm. The material was clamped on a special table that was 

covered with a rubber sheet to avoid bridging of the signal between the transducer and 

the receiver. A clamp provided adequate surface pressure between the transducers and the 

material. 

Figure 5.7 – Operation principle of the ultrasonic timer 
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Figure 5.7 demonstrates the operation principle of the ultrasonic timer. Timing 

starts when the excitation impulse rises, and stops when the received signal reaches a 

threshold value, above the noise level. The advantage of this method is that there is 

minimal delay between the reception of the signal and the stoppage of the timer. The 

measured time must be corrected to account for travelling time in the transducer house. 

Preliminary measurements were executed on veneer sheets, using various grain 

orientations. The exact location of the accelerometers was marked, and thin veneer strips 

were cut from the sheet, to include the marked measurement locations. Propagation times 

measured on veneer strips were no different from those obtained by measuring large 

sheets. This led to the conclusion that Equation 4.15 is sufficient for dynamic MOE 

determination. 

Specimen manufacturing and testing included the following steps: 

• Cutting structural veneer sheets to target dimensions of approx. 200 x 200 mm; 

• Specimen conditioning (see section 5.1.2);  

• Taking two width and length and four thickness measurements to 0.01 mm accuracy; 

• Measuring weight to the nearest 0.01 g; 

• Marking both sides of the sheets. Drawing lines at 0° to 90° angle to the grain, with 

15° increment, to designate the measurement directions; 

• Measuring the propagation time of ultrasound in the directions marked. 

Data analysis involved calculating the density of the specimens, and the 

propagation time (average of the corresponding measurements on the two sides) in each 

direction on the sheets. The propagation velocity was calculated by dividing the  
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Figure 5.8 – Schematic of the static tension test and the experimental setup 
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transducer distance with the propagation time. Finally, Equation 4.15 provided the ED 

values. Since every specimen was tested in each of the seven measurement directions, 

this situation corresponds to a randomized complete block (RCB) design. 

Relationship between the dynamic and static MOE was established by testing 

several veneer and solid wood specimens of each species (conditioned according to 

section 5.1.2), at four grain angle levels (0°,15°, 30° and 45°). The target dimensions 

were 300 mm in length and 25 mm in width. Solid wood specimens were 12 mm thick. 

Dynamic MOE was measured on these specimens in a similar manner as described 

above. Static MOE was measured using the MTS servo-hydraulic testing machine, 

equipped with mechanical tension grips. Load and strain values were collected using a 

computerized data acquisition system, with a data collection frequency of 1s. Figure 5.8 

shows the measurement setup of the  static tension test. Testing speed and other testing 

parameters were in accordance with the standard ASTM 143 – 94. 

 

5.2 Densification 

The effect of the density increase on the MOE of veneer was tested using the 

stress-wave timer, and the same specimens that had been used to assess the orthotropic 

tensile MOE. Preparation of the specimens included densification of the veneer sheets in 

a small scale laboratory press for 15 minutes. The temperature of the heated platens was 

120°C (250°F). Densification pressures varied so as to cause different levels of 

compaction, typically between 10 and 80%. After densification, veneer sheets were 

placed in a controlled environment of 21°C and 65% RH for several days prior to testing.  
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Specimen testing procedure was similar to that described in section 5.1.5. Length 

and width measurements were omitted; these dimensions were assumed unchanged. 

Stress-wave propagation directions corresponded to the previously marked lines, used for 

orthotropic tensile MOE determination. Because the original dynamic MOE values in 

these directions were already available, this made the calculation of a percent MOE 

increase possible, for every direction in each veneer sheet, individually. 

A small-scale static densification study was also conducted, to verify the capacity 

of the dynamic test to estimate the effect of densification on the static MOE of veneers. 

This study involved ten, 300 by 300 mm2 yellow-poplar veneer sheets, that were cut, 

parallel to the grain, into 25 mm wide strips, and marked for the identification of the 

original sheet. Strands were randomly assigned into groups, containing one strand from 

each sheet. Each group went through densification, using the same pressing parameters as 

described above, and different densification pressures, to achieve different levels of 

compaction for each group. One group was retained as an undensified control.  

After a conditioning period of several days (21°C, 65% RH), a static testing 

procedure, as described in section 5.1.5, established the tensile MOE of each veneer strip. 

The level of densification was calculated from the original and densified thickness of 

each veneer strand. The MOE of the undensified control specimen originating from the 

same veneer sheet provided a basis for computing the MOE increase of each densified 

specimen.  
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5.3 Mechanical properties of the composites 

5.3.1 Raw materials 

In order to validate the applicability of orthotropic models and the predictions of 

the simulation models described in chapter 7, two commercially available composite 

lumber materials were tested for various mechanical parameters: 

1. 15-layer yellow-poplar Laminated Veneer Lumber, manufactured from 3.2 mm 

(1/8 in) thick peeled structural veneer sheets. The LVL beams were produced at 

TrusJoist, a Weyerhaeuser Business, Buckhannon, WV, using a continuous 

technology and crushed lap joints to connect the consecutive veneers. Veneer sheets 

are sorted by stress-wave timing to ensure uniform product properties, but the layup is 

not optimized for maximum flatwise bending MOE. 

2. Parallel Strand Lumber manufactured at the same facility, using a mix of 75% 

yellow-poplar and 25% southern yellow pine (Pinus spp.) strands. The lumber is 

produced as large billets, using a continuous technology, at relatively high levels of 

densification. The billets are later re-sawn into smaller cross-sections. 

Figure 5.9 shows the structure of the composites, and defines three orthogonal 

axes; x is the longitudinal direction of the composites, y is the orientation of the 

constituents within the cross-section, and z is perpendicular to both. One can realize that 

these axes are analogous with the longitudinal, tangential and radial directions in solid 

wood, respectively, especially in LVL, where the anatomical orientation of the veneer 

layers concur with the length, width and thickness of the beams. 
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The assessment of the orthotropic properties of LVL and PSL requires the 

definition of two angles. By substituting the x, y and z coordinate axes for L, T and R, 

respectively, on Figures 4.1 and 4.5, it is possible to define load orientation (ϕ’) and 

strand/layer orientation (θ’). These angles are analogous to grain and ring orientation in 

solid wood, respectively. Using ϕ’ and θ’, it is possible to examine the compression and 

shear orthotropy of composite lumber in the same way as that of solid wood. 

 

5.3.2 Bending MOE measurements 

Twenty structural size beams of both LVL and PSL were tested in 4-point 

bending. The approximate beam cross-sections of LVL and PSL were 45 by 95 mm and 

75 by 140 mm, respectively, and beam length was 2.5 m. LVL specimens consisted of 4 

groups of 5 beams manufactured from the same panel, which allowed the determination 

of both within-panel and between-panel variation. The exact position of the PSL beams in  

 

x
y

z

Figure 5.9 – The definition of orthogonal axes for LVL and PSL 
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Figure 5.10 – Experimental setup of the composite bending tests 
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the production flow was uncertain, and the specimens were treated as a representative 

random sample of the population. A conditioning period of several weeks in an 

environment of 21°C and 45% RH preceded the bending tests. Measurements were 

carried out using a high-capacity Baldwin universal hydraulic testing machine, equipped 

with a 220 kN ± 5 N load cell. Testing procedure included both edgewise and flatwise 

load application for every beam. The applied load never exceeded the linear elastic limit 

of the beams.  

Figure 5.10 shows the testing setup of the bending test. Beam supports consisted 

of load bearing rollers, one of which provided free lateral adjustment and longitudinal 

movement for the beams. The load applicators, mounted on a self-aligning crossbar, had 

a 650 mm radius of curvature. The vertical displacement of the center point (C) relative 

to the load application points (L) was measured on the middle plane of the beam, using a 

linear potentiometer mounted on a bending yoke, which was supported on nails driven 

into the beam (see Figure 5.10.) The linear potentiometer had a measuring range of 0 ~ 

125 mm, and an accuracy of 0.01 mm. A computerized data acquisition system collected 

load and deflection data with a frequency of 1/s. In the absence of specific testing 

standards for wood-based composite lumber, the location of the load application points 

and the testing speed were established in accordance with ASTM D 198 – 94. The 

evaluation of the collected data followed the specification of this standard, too. 
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5.3.3 Orthotropy of shear strength 

The orthotropic shear strength of LVL and PSL was measured to verify the 

applicability of the models described in section 4.1.1, for these composites. The 

orientation of the sheared plane and the direction of load application involved 

combinations similar to the ones used for solid wood (see section 5.1.3). In this case, 

however, not all combinations were measured. Shear measurements included all planes 

for the longitudinal (x) direction (ϕ’ = 0° ; θ’ = 0°, 15°, … 90°), and load applications in 

every direction in the xy and xz planes. (ϕ’ = 0°, 15°, … 90° for θ’ = 0° and  90°.) Shear 

strength was also determined at ϕ’ = 90° ; θ’ = 45°, to furnish Equations 4.1, 4.4 and 4.5 

with every required constant.  

The sample size was 9 specimens for each combination. Instead of the testing 

setup shown on Figure 5.3, the standard ASTM testing apparatus was used (ASTM D 

143 - 94). The target shape and size of the specimens were also those specified in the 

standard, although beam cross-section sometimes limited the dimensions of the 

specimens. Other details of the measurements, including specimen conditioning, testing 

speed and the testing machine, were the same as specified in section 5.1.3.  

 

5.3.4 Orthotropy of compression elasticity 

The orthotropic compression properties of the composites were assessed to verify 

the simulation models that estimate the compression MOE of LVL  and PSL in different 

directions. Composite MOE was measured only in the six directions that are required for 

the prediction of the Orthotropic Tensor Theory (Ex, Ey, Ez, °
°

0
45E , °

°
90
45E , °

°
45
90E  – see  
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Equation 4.10), using a sample size of 10 in each direction. Specimen preparation and 

testing procedures were the same as described in section 5.1.4, with two notable 

exceptions: 

• Available composite beam thickness did not allow the manufacture of 100 mm long 

specimens in directions that deviated from the xy plane. In these instances specimen 

manufacture included re-gluing the composite lumber with cold-setting Polyvinyl 

Acetate (PVAc) wood adhesive, to create beams with double thickness.  

• For LVL, the maximum thickness created using the above practice was 87 mm, which 

restricted the maximum length of LVL compression in the yz and z directions. For 

these specimens, the gauge length of the strain measurement decreased to 35.5 mm. 

 

5.4 Composite geometry 

Accurate simulation of the elastic properties of LVL and PSL required the 

determination of certain geometric parameters of these composites, as well as those of the 

raw material before composite manufacture. Some of these variables can be described by 

a constant value (i.e. deterministic parameters), while others can assume random values, 

and can only be characterized by a statistical distribution (stochastic variables.)  

 

5.4.1 Geometric properties of the raw material 

The original thickness (to) of the veneer sheets in the layup of LVL before hot 

pressing is a stochastic variable. This variable was measured for all three species, with an 

accuracy of 0.01 mm, during the measurement of dynamic MOE. This yielded 80-90 

thickness measurements for each species. Since these veneer sheets had been peeled in a 
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commercial composite lumber manufacturing facility, measured thickness data is 

representative of the typical original veneer thickness, and can be used to establish the 

statistical distribution of to. 

The constituents of PSL are veneer strands that were cut out of the same veneer 

sheets described above, thus the distribution of their to values will follow the same 

probability density functions. The width of these strands is a stochastic parameter, with a 

mean of 25 mm (1 in.) As a simplification, this value was treated as a deterministic 

parameter. 

 

5.4.2 Geometric properties of LVL 

The geometry of LVL includes three stochastic and one deterministic parameter 

(Figure 5.11 a.) The stochastic parameters are the length of the veneer crushed lap joints 

or overlaps (λ), distance between two subsequent overlaps (δ), and  layer thickness. The 

deterministic variable is the number of layers, which – for the particular composite used 

in this study – was 15 in areas that did not contain overlap, and 16 where an overlap 

occured. 

 Overlap lengths and distance determination included 145 λ and 145 δ 

values, measured on the longitudinal sections of LVL beams, using calipers. Layer 

thickness was assessed by analyzing high-resolution computer images, of longitudinal 

sections. The analysis involved scanning 11 overlap-free sections of full-thickness LVL 

pieces, pasting a digital ‘ruler’ over the scanned images to facilitate high-accuracy layer 

thickness measurements, and recording the thickness of each layer (Figure 5.12). 
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Figure 5.11 – Geometric structure and stochastic parameters of LVL (a) and PSL (b) 
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5.4.3 Geometric properties of PSL 

The geometric structure of PSL includes four stochastic parameters  

(Figure 5.9 b): 

• Strand angle (α) is the angle between the longitudinal axis of the beam (x) and that of 

the strand (l). The deviation of the strand axes from the xy plane, which is typically 

very small in reality, was disregarded. A protractor provided strand angle 

measurements on the xy section of PSL beams, to the nearest degree. 

Figure 5.12 – Digital images used for LVL layer thickness measurements 
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• Strand deviation (β) is the angle between the general cross-sectional orientation of the 

strands (y), and that of the particular strand (o). Since strands are usually bent and/or 

distorted in the cross-section, the approximate deviation was measured on images of 

beam cross-sections, to the nearest angle, using a protractor. 

• Projected strand thickness (t) was also measured on cross-sectional images, using 

digital calipers. Since the thickness of the same strand may vary in the cross-section, 

the mean of five measurements provided the average projected strand thickness. 

• In PSL, the number of strands in a unit cross-section (u) is also a random variable. 

The determination of u involved counting the number of strands in ten cross-sections, 

and dividing the count by the cross-sectional area in every case. The count included 

partial strands only if their centroid appeared to be within the cross-sectional 

boundaries. 

Cross-sections used for determining β, t and u originated from different PSL 

boards to ensure the independence of the measured data. 

 

5.4.4 Data analysis 

A sufficiently high number of measurements were collected of each of the 

stochastic parameters, to allow statistical distribution determination. The ExpertFit® 

statistical analysis program (Law and Vincent 1999) was used to find the best probability 

density function to describe the geometric parameters. In choosing the best statistical 

distribution function, the following considerations were used (in order of importance): 

• Good data representation was the most important criteria. The function ranked highest 

by ExpertFit® usually received preference; 

• Ease of application in a simulation model was an important factor when choosing for 

equally representative models; 
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• Other factors were less critical. For example, if an unbounded distribution fit the 

experimental data best, it was preferred, even though using it in a simulation might 

yield unrealistic figures (e.g., negative thickness values.) Although the probability of 

getting negative values is usually extremely small, simulation routines using these 

functions should include provisions to exclude such results. 
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6 RESULTS AND DISCUSSION 

6.1 Orthotropy of the raw material 

 

6.1.1 Physical properties of the raw materials 

Table 6.1 shows the measured physical properties of the solid wood specimens, 

as well as the veneer sheets manufactured from the Appalachian species.  In addition to 

moisture content (MC) and specific gravity (SG), weight density is also reported for the 

veneer specimens. Veneer density statistics are necessary for the validation of the 

developed simulation models. 

 

Table 6.1 – Summary statistics of the measured physical properties of Appalachian 
hardwood species 

   Moisture Content 
(%) 

 Specific gravity  Density 
(kg/m3) 

Species N a   x b  s c   x  s   x  s 

Solid wood           
Aspen 10  11.4 0.92  0.39 0.01  -- -- 
Red oak 10  11.1 0.30  0.63 0.03  -- -- 
Yellow-poplar 10  11.3 0.51  0.39 0.01  -- -- 

Veneer           

Aspen 20  11.8 0.32  0.37 0.01  417 16 
Red oak 20  10.5 0.38  0.50 0.01  552 14 
Yellow-poplar 20  11.5 0.61  0.42 0.02  469 24 

a – sample size 
b – mean value 
c – standard deviation 
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6.1.2 Orthotropy of shear strength 

Table 6.2 summarizes the basic statistics of all the experimentally obtained shear 

strength data by species. The mean values were used to create anisotropy diagrams in 

three dimensional Cartesian coordinate systems as shown on Figures 6.1 a through 6.3 a. 

The intermediate grid data points were generated by inverse distance interpolation using a 

commercial software SigmaPlot® (SPSS Inc. 1997) for better viewing. 

In general, shear strength decreased significantly† with the increase of grain angle 

for all species involved in the study. At zero degree grain angle (traditional shear, parallel 

to the grain) the shear strength decreased slightly as ring angle increased from 0 to 90 

degrees. However, this tendency could not be observed at fixed 90° grain angle (i.e., 

rolling shear). Either a slight increase or local maximum was experienced.  

Maximum shear strength values (MSS) were not consistently measured at 0° grain 

orientation. At 0° ring angle for all the species, the MSS was measured at 15° grain 

orientation. Other researchers reported the same phenomenon (Ashkenazi 1959; Szalai 

1994). This characteristic may be explained by the study of stress distribution function 

along the length of the sheared plane. Yilinen (1963) demonstrated that this function 

depends on the length to width ratio of the sheared plane and other factors including force 

application method, etc. It might be suspected that the stress distribution at 15° grain 

orientation becomes more uniform along the length of the sheared plane, while possible 

stress peaks near the entrance notch at 0° grain angle accelerate the failure. 

 

† Statistical significance was assessed at a 95% confidence level (p<0.05) 
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Table 6.2 – Summary and basic statistics of the experimentally determined shear strength values 

ASPEN

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N a  τ τ τ τ b s c N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s

0 15 7.87 0.23 15 7.30 0.50 15 6.77 0.46 15 5.42 0.79 15 6.16 0.64 15 6.17 0.27 15 6.30 0.80
15 9 8.39 0.38 8 8.16 1.05 9 7.98 0.93 8 7.30 1.03 7 6.67 0.84 8 5.78 0.40 9 5.99 0.60
30 10 7.16 0.32 8 6.37 0.90 7 7.21 0.80 8 5.74 0.47 7 5.62 1.03 8 4.99 1.45 7 5.62 0.80
45 6 4.98 0.38 6 4.29 0.34 6 4.75 0.30 6 4.27 0.24 6 4.44 0.24 6 5.02 0.57 6 4.42 0.22
60 6 3.18 0.31 6 3.45 0.45 6 3.43 0.22 5 3.25 0.38 5 2.54 0.50 4 2.61 0.27 5 3.13 0.44
75 6 1.92 0.12 6 2.52 0.36 6 2.81 0.36 6 1.93 0.14 6 1.90 0.09 6 2.73 0.12 6 2.45 0.24
90 10 2.24 0.07 10 1.43 0.13 11 2.24 0.09 11 2.28 0.09 11 3.11 0.09 10 2.98 0.09 10 2.54 0.12

OAK

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s

0 15 11.97 1.04 15 12.01 0.95 15 11.6 0.48 15 11.95 1.00 15 12.77 0.64 15 11.36 0.65 15 10.62 0.45
15 8 11.98 0.90 9 11.28 0.67 9 11.55 0.99 9 12.84 0.33 9 13.04 0.89 9 12.16 0.50 9 12.36 0.36
30 8 11.85 0.74 9 11.60 1.76 8 11.48 1.16 8 11.36 0.91 8 11.32 1.12 8 11.17 1.08 8 11.33 0.50
45 5 9.99 0.34 6 9.34 0.75 5 6.64 0.75 6 9.94 0.86 5 8.59 0.37 5 8.38 0.50 5 8.82 0.23
60 7 7.01 0.15 7 8.07 0.39 7 8.14 0.28 6 7.69 0.46 7 7.20 0.21 5 7.80 0.21 7 6.81 0.33
75 7 6.06 0.30 6 5.64 0.26 6 5.65 0.55 7 6.41 0.43 7 6.12 0.13 7 6.84 0.45 6 6.57 0.22
90 11 4.44 1.30 11 5.55 0.86 11 5.72 0.73 10 6.88 0.25 11 7.06 0.51 10 4.62 0.87 10 5.37 0.25

YELLOW-POPLAR
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s N  ττττ s

0 15 7.91 0.49 15 7.13 0.60 15 7.13 0.43 15 7.32 0.49 15 7.23 0.75 15 9.06 0.88 15 6.18 0.30
15 9 10.59 0.54 9 8.37 1.26 9 7.31 0.80 9 6.65 0.56 9 6.74 0.35 10 6.77 0.35 10 6.42 0.30
30 6 6.94 0.37 8 6.70 0.74 9 6.57 1.37 7 6.10 1.64 9 5.91 0.85 8 5.61 0.33 8 5.95 1.49
45 5 4.85 0.19 4 4.98 0.33 6 4.85 0.39 6 5.74 0.82 5 5.05 0.55 6 4.35 0.27 5 4.73 0.92
60 6 2.81 0.39 5 3.85 0.42 6 2.81 0.10 6 3.53 0.99 6 3.60 0.63 6 3.13 0.31 6 3.79 0.24
75 6 2.75 0.43 6 2.96 0.42 6 2.28 0.16 6 2.28 0.15 6 1.94 0.06 6 1.94 0.08 6 2.87 0.26
90 3 2.43 0.68 4 2.60 0.52 9 2.86 0.78 11 3.52 0.54 11 3.42 0.20 11 3.35 0.57 11 3.17 0.43
a – sample size
b – mean shear strength value (MPa)
c – standard deviation (MPa)
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Figure 6.1 – Comparison of experimental and model predicted shear strength data  
of quaking aspen by orthotropic diagrams. 
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Figure 6.2 – Comparison of experimental and model predicted shear strength data  

of red oak by orthotropic diagrams. 
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Figure 6.3 – Comparison of experimental and model predicted shear strength data  

of yellow-poplar by orthotropic diagrams. 
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 The failure mode was not always pure shear. Over 45° grain angle, ring-porous 

wood (oak) inclined to fail along the earlywood/latewood interface or along the ray. The 

same tendency was encountered regarding the other species as the grain angle approached 

90°. Liu and Floeter (1984) observed similar failure modes when testing Sitka spruce 

specimens in pure shear in the LT plane. They concluded that shear strength depends only 

on the initiation of failure and not on the direction of fracture propagation. All of the 

measured shear strength values were kept, even if the specimen failed in a plane that was 

out of the theoretically sheared plane. 

Standard statistical evaluation of the data included two-way ANOVA procedures 

at 95% confidence level. The two factors were the grain and ring orientations, both with 

seven levels according to the 15° angle increments. The procedure revealed statistically 

significant differences among the levels of both factors, for all species. Furthermore, 

significant interaction was detected between the two factors. These results justify the 

applicability of prediction models that account for the effect of both ring and grain angle 

on the shear strength. (Detailed ANOVA results are provided in APPENDIX B.) 

It should be noted, that all of the data sets exhibited lack of normality and unequal 

variances. The violation of these statistical assumptions originated from the limited 

sample size and specimen manufacturing practice. Most of the specimens were cut from 

the same stem or board and the specimens in a group were machined from blanks 

consecutively. Thus, complete randomization could not be achieved. More extensive 

testing and the fulfillment of completely randomized design were beyond the limitations 

of this research. 
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Table 6.3 – Coefficients of determination provided by the various prediction models 

Modified Hankinson formula 
Species 

Orthotropic 
tensor theory 

r2 

Quadratic 
formula 

r2 n r2 

Aspen 0.73 0.59 2.72 0.87 
Red oak 0.61 0.57 2.62 0.83 
Yellow-poplar 0.68 0.62 2.47 0.76 

n ! the power in the Modified Hankinson formula  

 

In the next step, the applicable models described in section 4.1.1, including the 

orthotropic tensor theory and the two combination models, based on the quadratic 

formula and the modified Hankinson’s equation, were evaluated for the accuracy of their 

estimation. The necessary input data (τRL; τTL; τRT; τTR; °
°

45
90τ ) were the average measured 

strength values. The power (n) for the modified Hankinson’s equation was determined by 

curve fitting, using the entire experimental database. Each species had its n value, which 

is listed in Table 6.3. The model generated strength values were plotted as orthotropy 

diagrams for visual evaluation (Figures 6.1 to 6.3).  

Due to the deficiency of complete randomization and the small sample size, 

conservative statistical fitting procedures resulted in lack of fit for all of the cases. Thus, 

r2 analysis was used to evaluate and rank the performance of the fitted models. The 

coefficient of determination (r2) is a measure of how well the model describes the data. 

Larger values, close to 1, indicate that the model describes the relationship between 

independent and dependent variables well. The value of r2, by definition, equals one 

minus the proportion of variability unexplained by the model (Dowdy and Wearden 

1991). Numerically it is given by the following equation: 
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,  [6.1] 

where:  VT, VU – total variance and variance unexplained by the model; 

N – the total number of shear strength measurements on the given species; 
θ
ϕτ i  – the ith measurement at grain angle ϕ and ring angle θ ; 

τ  – average of the N measurement points (grand average); 
θ
ϕτ̂  – predicted shear strength at grain angle ϕ and ring angle θ ; 

SST, SSE – total sum of square of the data, and the error sum of square associated 
by the model. 

Table 6.3 compiles the results of the coefficient of determination analyses by 

species and model types. For all species, the combination model based on the modified 

Hankinson's equation resulted in the closest agreement with experimental data. The good 

performance of this model was expected because the power determination was based on 

the entire experimental data set. Furthermore, only this model can mathematically 

estimate the peak stresses at small grain angle deviations.  

Calculated r2 values indicate that Equation 4.1, derived from a 4-dimensional 

tensor analysis, can predict the orthotropy of shear strength reasonably well. The 

consistency of this model regarding the quality of the predictions and its strong 

theoretical background encourage its use, although the model can not predict the peek 

stresses other than at 0° grain orientation.   

Conversely, the combined model, using the quadratic formula, provided poor fit 

to the experimental data. Although the calculated r2 values were over 0.55, compared to 

the other models, the accuracy of the predictions was significantly lower. Results imply 



6   RESULTS AND DISCUSSION 76 

that the derived equation may not be valid in all the oblique directions other than the 

principal anatomical planes because of the unique composite structure of solid wood. 

 

6.1.3 Orthotropy of compression strength and elasticity 

Tables 6.4 and 6.5 contain the summary statistics of the measured properties. These 

results represent all the experimental data. No outlier was discarded. The high degree of 

orthotropy was evident for all species for both strength and elasticity as a response to 

grain angle changes. However, the effect of ring orientation was not so clear. It does 

appear that the changing ring orientation at grain angles < 45° causes strength and 

stiffness decrease, but at more sloping grains, the increasing ring angle tends to improve 

the compression properties slightly. For all species and for both properties, two-way 

ANOVA procedures revealed the statistically significant effect of both ring and grain 

angle at 95% confidence level. Furthermore, the interactions between these factors were 

also significant. (APPENDIX B contains the ANOVA tables for all species.) Figure 6.4 a 

demonstrates the stress-strain behavior of traditional compression-parallel-to-the-grain 

specimens by species. On Figure 6.4 b the characteristics of compression perpendicular 

to the grain at 15° ring orientation can be seen. The long horizontal part of the diagram is 

the result of subsequent cellular collapse of early- then late-wood layers. The stabilized 

stresses in this region were considered as strength values if the specimen did not fail in 

shear prior to densification. Figure 6.4 c illustrates the compression behavior of yellow-

poplar at different grain angles. 
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Table 6.4 – Summary and basic statistics of the experimentally determined compression strength values 
ASPEN

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N a σ σ σ σ b s c N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s

0 – – – – – – – – – 10 36.23 1.14 – – – – – – – – –
15 – – – – – – – – – 10 28.55 2.64 – – – – – – – – –
30 6 10.54 1.99 4 11.33 0.33 4 11.05 0.44 6 12.27 1.21 4 13.25 1.17 4 10.54 4.94 6 12.55 0.71
45 6 6.52 0.52 4 8.15 1.12 4 6.09 0.60 6 5.13 0.39 4 6.61 0.78 4 6.16 0.19 6 8.35 0.89
60 6 3.63 0.19 4 4.24 0.19 4 4.05 0.54 6 3.88 0.37 4 3.77 0.02 4 5.81 0.08 6 5.08 1.24
75 6 3.18 0.30 4 2.88 0.12 4 3.01 0.13 6 2.62 0.10 4 3.31 0.60 4 4.97 0.14 6 3.12 0.10
90 6 3.07 0.13 4 3.07 0.18 4 3.38 0.13 6 3.44 0.09 4 3.70 0.24 4 4.14 0.10 5 4.28 0.13

OAK

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s

0 – – – – – – – – – 9 49.72 2.75 – – – – – – – – –
15 – – – – – – – – – 10 41.76 2.67 – – – – – – – – –
30 6 28.31 1.58 4 33.23 1.95 4 26.81 1.74 6 18.17 5.08 4 27.74 2.00 4 25.72 1.62 6 24.25 1.11
45 6 22.13 0.34 4 23.24 1.94 4 17.18 0.69 6 13.14 0.14 4 16.96 2.77 4 14.42 0.31 6 17.01 0.58
60 6 13.91 0.54 4 16.06 0.75 4 12.99 0.99 6 13.62 1.70 4 10.85 0.64 4 10.23 0.05 6 13.07 0.60
75 6 11.25 0.21 4 13.30 0.41 4 9.81 0.30 6 11.03 0.20 4 9.19 0.52 4 8.22 0.13 6 11.29 0.35
90 6 10.17 0.21 3 11.63 0.42 4 9.35 0.24 6 9.77 0.49 4 9.36 0.17 4 7.65 0.29 6 11.32 0.43

YELLOW-POPLAR

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s N σσσσ s

0 – – – – – – – – – 10 35.47 2.52 – – – – – – – – –
15 – – – – – – – – – 10 33.35 3.74 – – – – – – – – –
30 6 20.84 1.44 4 19.03 0.40 4 21.37 0.87 6 19.55 0.97 4 16.70 1.20 4 15.56 1.07 6 17.33 0.41
45 6 13.08 0.68 4 12.89 4.32 4 12.80 0.42 6 13.77 0.88 4 11.46 0.20 4 9.07 0.18 6 9.22 1.76
60 6 8.19 0.09 4 7.97 0.11 4 8.40 0.29 6 7.81 0.29 4 8.07 0.18 4 6.66 0.24 6 8.12 0.22
75 6 6.71 0.19 4 6.50 0.06 4 6.80 0.14 6 5.46 0.37 4 6.35 0.21 4 5.60 0.14 6 5.35 0.28
90 6 4.38 0.15 4 5.99 0.14 4 6.31 0.08 6 4.42 0.08 4 6.40 0.23 4 5.16 0.10 6 7.13 0.16
a – sample size
b – mean compression strength value (MPa)
c – standard deviation (MPa)
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Table 6.5 – Summary and basic statistics of the experimentally determined compression MOE values 

ASPEN

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N a Ε Ε Ε Ε b s c N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s

0 – – – – – – – – – 10 10.74 1.71 – – – – – – – – –
15 – – – – – – – – – 10 6.10 0.83 – – – – – – – – –
30 5 1.60 0.25 4 1.70 0.29 4 1.91 0.12 6 1.96 0.59 4 2.31 0.26 4 3.37 1.18 6 2.45 0.44
45 6 0.72 0.10 4 0.99 0.15 4 0.63 0.06 6 0.53 0.11 4 1.45 0.89 4 0.90 0.11 6 2.10 0.46
60 6 0.46 0.27 3 0.42 0.05 4 0.34 0.18 6 0.44 0.09 4 0.43 0.03 4 0.90 0.26 6 0.98 0.19
75 6 0.24 0.05 4 0.18 0.02 4 0.21 0.02 6 0.24 0.03 4 0.42 0.14 4 0.78 0.14 6 0.37 0.05
90 6 0.26 0.03 4 0.24 0.07 3 0.33 0.03 5 0.36 0.03 4 0.36 0.04 4 0.54 0.05 5 0.82 0.26

OAK

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s

0 – – – – – – – – – 11 14.40 2.16 – – – – – – – – –
15 – – – – – – – – – 10 8.43 2.20 – – – – – – – – –
30 6 3.03 0.33 4 3.44 0.29 4 2.58 0.29 6 2.10 0.86 4 4.46 0.94 4 3.78 0.29 6 3.85 0.21
45 6 2.42 0.20 4 2.03 0.27 4 1.59 0.22 6 1.59 0.10 4 2.19 0.34 4 2.08 0.29 6 2.41 0.29
60 6 1.62 0.23 4 1.49 0.18 4 1.24 0.07 6 1.44 0.18 4 1.68 0.13 4 1.31 0.12 6 1.81 0.27
75 6 1.04 0.10 4 1.13 0.07 4 1.00 0.07 6 1.11 0.05 4 1.72 0.33 4 0.97 0.15 6 1.84 0.22
90 6 1.04 0.14 3 0.93 0.19 4 0.97 0.07 6 0.92 0.06 4 1.32 0.15 4 0.97 0.07 6 1.61 0.29

YELLOW-POPLAR

Ring Orientation (θθθθ °°°°)
Grain 0 15 30 45 60 75 90
angle Shear Strength
(ϕϕϕϕ °°°°) N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s N ΕΕΕΕ s

0 – – – – – – – – – 10 10.26 1.47 – – – – – – – – –
15 – – – – – – – – – 10 7.15 1.33 – – – – – – – – –
30 6 3.25 0.84 4 2.72 0.20 4 3.26 0.35 6 2.55 0.15 4 3.20 0.33 4 3.21 0.11 6 2.39 0.22
45 6 1.46 0.11 4 1.64 0.67 4 1.49 0.13 6 1.45 0.16 4 1.64 0.07 4 1.01 0.06 6 1.18 0.35
60 6 0.82 0.09 4 0.80 0.08 4 0.98 0.07 6 0.79 0.08 4 1.13 0.07 4 0.66 0.07 6 0.97 0.13
75 6 0.55 0.24 4 0.65 0.07 4 0.73 0.04 6 0.51 0.05 4 0.60 0.06 4 0.49 0.03 6 0.53 0.14
90 6 0.37 0.04 4 0.73 0.07 4 0.66 0.04 6 0.40 0.02 4 0.73 0.04 4 0.43 0.05 6 0.74 0.11
a – sample size
b – mean compression MOE value (GPa)
c – standard deviation (GPa)
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Figure 6.4 – Typical stress-strain diagrams 

a. Traditional, parallel to the grain compression 
b. Perpendicular to the grain compression 

c. The effect of grain orientation 
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6.1.3.1 Prediction of the compression properties  

The mean values were used to create anisotropy diagrams in a three dimensional 

polar coordinate system. Such diagrams are shown on Figures 6.5 a and 6.5 d for 

strength and MOE of aspen, respectively. The seven values, indicated at 15° grain angle, 

all correspond to the one average value of ten replications that were measured at this 

level at random ring orientations. The intermediate mesh data were interpolated using the 

inverse distance method (SPSS Inc. 1997). Figures 6.6 and 6.7 contain similar diagrams 

for red oak and yellow-poplar, respectively.  

In the next step, the two models discussed in section 4.1.2.2 were evaluated for the 

accuracy of their estimation. The required model inputs, were the average measured 

strength and MOE values. The model-generated property data were plotted as orthotropy 

diagrams for visual evaluation. Figures 6.5 through 6.7 contains these diagrams for 

aspen, read oak and yellow-poplar. Diagrams marked by b and e represent the strength 

and MOE values predicted by Equation 4.10, derived from tensor analysis. The c and f 

details show the predictions of three-dimensional Hankinson’s formula. The diagrams 

clearly confirm the individual and interaction effect of ϕ and θ on the strength and MOE 

in compression.  

Statistical comparisons of experimental and predicted properties by r2 analyses 

(Equation 6.1) confirmed the applicability of these models. Table 6.6 contains the results 

of the analyses by species and model types. For aspen and red oak compression strength 

and MOE, both models guaranteed almost equally excellent agreement (r2 > 0.9).  
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a. – Experimental strength values 

b. – Predicted – 3D Hankinson formula 

d. – Experimental MOE values 

e. – Predicted – 3D Hankinson formula 

c. – Predicted – Orthotropic tensor theory f. – Predicted – Orthotropic tensor theory 

Figure 6.5 – Orthotropic diagrams of compression strength and elasticity – quaking aspen 
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a. – Experimental strength

b. – Predicted – 3D Hankinson

d. – Experimental MOE

e. – Predicted – 3D Hankinson

c. – Predicted – Orthotropic tensor f. – Predicted – Orthotropic tensor 

Figure 6.6 – Orthotropic diagrams of compression strength and elasticity – red oak 
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a. – Experimental strength

b. – Predicted – 3D Hankinson

d. – Experimental MOE

e. – Predicted – 3D Hankinson

c. – Predicted – Orthotropic tensor f. – Predicted – Orthotropic tensor 

Figure 6.7 – Orthotropic diagrams of compression strength and elasticity – yellow-poplar 
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Table 6.6. - Coefficients of determination provided by the two prediction models for 

compression strength and MOE 

Coefficient of determination  
Orthotropic tensor theory 

 Coefficient of determination  
3-D Hankinson formula 

 
 

Species 
Compression 

strength 
Compression 

MOE 
 Compression 

strength 
Compression 

MOE 

Aspen 0.93 0.94  0.91 0.91 
Red oak 0.93 0.93  0.93 0.94 
Yellow-poplar 0.92 0.93  0.72 0.83 

 

For yellow-poplar, however, the prediction quality of the Hankinson’s formula decreased, 

although the r2 values remained on acceptable levels for both strength and stiffness. The 

phenomena may be explained by the sensitivity of Hankinson’s equation to small grain 

angle variations. This is particularly manifested during strength predictions where the 

effect of small grain deviation on the experimentally measured strength is less significant.    

 

6.1.3.2 Failure  mode analysis 

During the compression strength determination, several types of failure were 

observed. Figure 6.8 shows the most characteristic failure modes, where specimen a 

demonstrates a typical compression failure. Specimens b and c failed as a combination of  

cellular collapse and shear as indicated by the horizontal dislocation of certain parts of 

the blocks. Clear shear failures in the LR an LT planes are represented by specimens d 

and e, respectively.  Most of the perpendicular-to-the-grain specimens (ϕ = 90°) did not 

fail at all, due to the infinite densification. For safety reasons, tests were disrupted as soon 

as the stress level explicitly stabilized in the plateau region (Figure 6.4 b).  
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The complexity of failure mode prediction has been addressed briefly in section 

4.1.2.1. In further elaboration of the issue, Figure 6.9 demonstrates the likelihood of 

shear failure assessment for two particular angle combinations under compression stress. 

First, consider a red oak specimen with ϕ = 45° and θ  = 15° grain and ring 

orientations under σu = 23.24 MPa compression stress in the global coordinate system. 

Note that σu is the average compression strength of oak for the particular ϕ,θ combination 

(Table 6.4). In Figure 6.9, the mesh represents the orthotropic shear strength of oak in 

planes parallel to the grain (see Figure 6.2 d). Possible combinations of ϑ  and Θ are 

defined by the inter-dependence of the grain orientation of FV and the rotation angle of 

the parallel-to-the-grain sheared plane (see Figure 4.4.) For a detailed derivation of the 

 

Figure 6.8 – Characteristic failure modes of compression specimens; a – compression;  
b, c – combined compression and shear; d, e – shear failure 
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 relationships between ϕ, θ, ϑ and Θ, see APPENDIX C. Shear strength values at these 

angle combinations form the solid line within the strength surface, which denotes the 

possible shearing scenarios of the specimen. This line can be considered as the critical 

shear stress contour of the examined ϕ, θ compression specimen. The corresponding 

shear stresses, computed from σu = 23.24 MPa and the inclined sectional areas (A), are 

represented by the symbols and drop-lines. Solid symbols mark the compression- induced 

shear stresses that exceed the estimated shear strength, while the empty symbols mark the 

stresses that are below the strength values. Theoretically, the specimens should have 
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Figure 6.9 – Likelihood of shear failure in compression specimens. 

a. – critical shear stress contour of specimen ϕ = 45° , θ = 15° ; σu = 23.24 MPa 
b. - critical shear stress contour of specimen ϕ = 90° , θ = 45° ; σu = 9.77 MPa 
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failed in shear. However, because of the natural variability of wood and the presence 

normal stresses in the sheared planes, usually a combined failure was observed as in 

specimen c on Figure 6.8 c.  

 The second example demonstrates that compression may induce shear 

failure in a horizontally grained specimen too. For the ϕ = 90°, θ = 45° specimens the 

average compression strength (σu) was 9.77 MPa. The critical shear stress contour 

reduces to a single line (dotted in Figure 6.9) along the lower edge of the shear strength 

surface, because the direction of shear is always perpendicular to the direction of grain 

for this specimen configuration. The calculated stresses exceed the strength values in the 

range of 15° > Θ > 0°. This domain represents inclined planes around 45° relative to the 

length of the specimen, in which shear failure may occur. At Θ =45° the shear stress is 

zero because no shear can be induced along the vertical or horizontal planes in the global 

coordinate system. Unfortunately, the practical application of such analysis is limited, 

because of the uncertainties in shear strength determination and variations in growth 

characteristics of natural wood.  

 

6.1.4 Orthotropic of tensile elasticity of structural veneers 

Table 6.7 shows the summary statistics of the experimental stress-wave MOE of 

each species at the seven grain angle levels. Figures 6.10 a through 6.12 a contain box 

plots of the measured MOE values at each grain orientation.  



6   RESULTS AND DISCUSSION 88 

 
 
 
Table 6.7 – Summary statistics of the experimentally determined dynamic MOE values (GPa) 

ϕϕϕϕ °°°°

0 15 30 45 60 75 90

Mean 11.976 7.056 2.658 1.279 1.048 1.035 1.030
s 0.888 0.752 0.287 0.135 0.045 0.045 0.047
Min 10.757 5.697 2.185 1.111 0.982 0.963 0.959

QUAKING ASPEN

( n=20 )
Max 13.866 13.866 8.791 3.239 1.680 1.163 1.152

Mean 10.651 5.770 1.997 1.396 1.387 1.383 1.382
s 1.201 0.827 0.348 0.046 0.039 0.039 0.044
Min 8.135 4.625 1.450 1.309 1.309 1.306 1.284

RED OAK

( n=23 )
Max 12.508 8.195 2.811 1.483 1.461 1.455 1.462

Mean 13.529 7.631 2.589 1.254 1.149 1.145 1.142
s 1.020 0.735 0.254 0.112 0.050 0.060 0.062
Min 11.907 6.507 2.218 1.133 1.032 1.015 1.003

YELLOW-POPLAR

( n=21 )
Max 15.496 9.555 3.347 1.668 1.206 1.279 1.254
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Orthotropic Tensor Theory ( r2 = 0.939 )
Combined model ( r2 = 0.979 )

Figure 6.10 – Orthotropic dynamic MOE of quaking aspen structural veneer sheets 

a. – experimental and model predicted values 
b. – Average Absolute Percentage Bias associated with the different models 
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Figure 6.11 – Orthotropic dynamic MOE of red oak structural veneer sheets 

a. – experimental and model predicted values 
b. – Average Absolute Percentage Bias associated with the different models 
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Figure 6.12 – Orthotropic dynamic MOE of yellow-poplar structural veneer sheets 

a. – experimental and model predicted values 
b. – Average Absolute Percentage Bias associated with the different models 
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In general, measured dynamic MOE values decreased sharply with grain angle, 

under 45° grain orientation. Above this angle, MOE leveled off, and there was little 

additional decrease. These observations agree well with the results of the orthotropic 

compression MOE determination (section 6.1.3.) One-way ANOVA revealed significant 

effect of grain angle for each species. Tukey’s multiple comparison test, however, failed 

to detect significant differences between the MOE values above 45° grain angle. 

(APPENDIX B provides a detailed summary of the ANOVA results.) 

The two prediction models discussed in section 4.1.3 were evaluated by applying 

them to each specimen individually. A measure of the model’s efficiency is the average 

absolute percent bias (AAPB), that can be calculated the following way: 

%100

ˆ

N
E

EE

Bias i

ii∑
−

= ϕ

ϕϕ

 [6.2] 

where:  iEϕ
ˆ  – MOE value predicted at grain angle ϕ by applying Equations 4.13 or 

4.14 on specimen i; 

Eϕi – MOE measured on specimen i at grain angle ϕ ; 
N – total number of specimens. 

Table 6.8 contains the calculated AAPB by species, prediction model and grain 

angle. Figures 6.10 b through 6.12 b illustrate how bias changes throughout the grain 

angle range. 
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Table 6.8. – Average absolute percent bias (AAPB) values associated with the three 
models 

 Average absolute bias (%) 
 ϕϕϕϕ °°°°        Hankinson’s 

formula 
Orthotropic 

tensor theory 
Combined 

model 

0  0.0 0.0 0.0 
15  7.1 31.3 12.9 
30  24.3 24.0 6.4 
45  49.4 0.0 14.5 
60  27.3 4.3 6.1 
75  6.0 1.8 1.5 

ASPEN 

90  0.0 0.0 0.0 

0  0.0 0.0 0.0 
15  29.2 18.2 15.4 
30  104.1 15.0 51.6 
45  75.1 0.0 24.1 
60  27.3 9.5 2.8 
75  6.1 4.6 3.6 

OAK 

90  0.0 0.0 0.0 

0  0.0 0.0 0.0 
15  8.7 36.8 13.3 
30  41.7 25.0 7.0 
45  68.8 0.0 20.9 
60  28.8 6.9 2.3 
75  6.2 3.7 2.9 

YELLOW-
POPLAR 

90  0.0 0.0 0.0 
 

The orthotropic tensor theory exhibits little bias at higher grain angles, above 45°. 

At lower grain orientations, however, it tends to underestimate MOE by 20~40%. Since 

MOE values are relatively high in this region, this translates into a large absolute bias.  

increases rapidly to a relatively high peak at ϕ = 30° or 45°. The maximum bias is 

especially large in the case of oak. Since MOE decreases significantly at these grain 

orientations, this corresponds to a smaller maximum absolute bias than that of the 

orthotropic tensor theory. 
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The above considerations suggest that a combination of the two models could 

improve the prediction throughout the whole grain angle range. The following is a 

possible combination that works well: 

 
2/

2/ˆ
2/

ˆˆ
π

ϕπ
π
ϕ −+= HOC EEE  [6.3] 

where:  CÊ  – predicted MOE at grain angle ϕ  – combined model; 

OÊ  – predicted MOE at grain angle ϕ  – Orthotropic Tensor Theory (Eq. 4.13). 

HÊ  – predicted MOE at grain angle ϕ  – Hankinson’s Fromula (Eq. 4.14); 

Figures 6.10 through 6.12 and Table 6.8 show the AAPB associated with the 

combined model, as well. Clearly, this model provides very good prediction throughout 

the whole range, for aspen and yellow-poplar. Although for oak, its bias is still rather 

large at ϕ=30°, the general performance of the combination appears to be better than 

either of its components. 

Figure 6.13 shows the relationship between the experimentally measured 

dynamic and static MOE. This graph includes the data points measured on both veneer 

and solid wood, for all three species. Theoretically, the ratio of ED and ES should depend 

only on the characteristic time of the determination (see Equation 4.17.) Since this does 

not change with species or orientation, the relationship should be linear, and the 

regression line should pass through the origin. The correlation parameters shown on 

Figure 6.13 a, however, show a different trend. The regression line does not pass through 

the origin, and the linearity of the data is questionable. The cause of this anomaly is most 
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likely the high damping effect in veneer in non-longitudinal directions, which might have 

influenced the measured propagation time. A serious problem with the regression line 

depicted on Figure 6.13 a is that, according to this model, dynamic MOE values 

measured at higher grain deviations correspond to negative static MOE. 

Figure 6.13 b shows the same graph with a second order regression line. This 

model describes the data significantly better than did the line depicted in Figure 6.13 a, 

as the improved r2 value indicates. It is also apparent that, using the quadratic model, 

positive static MOE values are calculated for any dynamic MOE. While there is no 

theoretical justification for using a second order regression model, it appears that the 

quadratic equation might be best for estimating the static MOE from its dynamic 

counterpart. 

 

6.2 The effect of densification on the MOE of veneer 

Analyzing the relationship between densification and MOE increase required the 

calculation of two parameters: 

 %100
o

od

E
EEE −=∆  [6.4] 

where:  ∆E – MOE increase (%); 

Eo, Ed – MOE measured before and after densification, and 

 %100
o

od

ρ
ρρρ −=∆ , [6.5] 

where:  ∆ρ – densification (%); 

ρo, ρd –density before and after densification. 
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6.2.1 The effect of densification on the dynamic MOE 

 One densification value was calculated, while a separate ∆E value was obtained 

in every measurement direction, for each specimen. Individual analysis of the correlation 

between ∆ρ and ∆E at each grain orientation indicated that grain angle significantly 

affected the relationship between these parameters. Closer examination of the data 

revealed that differences occurred mainly at the 15° ~ 45° grain angle range, due to the 

presence of outliers in the experimental data. These were caused by the increased 

uncertainty of the measurements at these grain angles. After the elimination of outlying 

values, the relationship between ∆E and ∆ρ was similar at every grain angle level. For 

each species, ∆E values measured at different grain angles were pooled together for 

further analysis. 

As expected, ∆E tends to increase with ∆ρ, for all of the species, (Figure 6.14). Two 

considerations were used to describe the relationship between these parameters. First, the 

regression line must pass through the origin, because the MOE of non-densified veneer 

remains unchanged. The second assumption is based on the consideration, that, although 

squeezing more material into the same volume increases the resistance to deformation, 

cell walls suffer some damages in the process. The cumulative effect of the damages 

decreases the rate of improvement progressively. A second order polynomial regression, 

with zero y-intercept and a negative second order coefficient, is adequate to meet the 

above criteria. 
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Table 6.9 – Parameters of the first and second order regression equations, and the 
associated r2 values 

 Regression 
type b0 b1 b2 r2 

1.) BASED ON DYNAMIC MOE 
Linear1 0 1.170 --- 0.61 

ASPEN Quadratic2 0 1.606 -0.008 0.69 

Linear 0 1.232 --- 0.83 
RED OAK Quadratic 0 1.401 -0.003 0.84 

Linear 0 1.224 --- 0.88 YELLOW-
POPLAR Quadratic 0 1.463 -0.004 0.89 

2.) BASED ON STATIC MOE 
Linear 0 0.805 --- 0.36 YELLOW-

POPLAR Quadratic 0 1.332 -0.005 0.45 
1Regression model: ∆E = b0 + b1 ∆ρ 
2Regression model: ∆E = b0 + b1 ∆ρ + b2 ∆ρ 2 

 

 

Figure 6.14 contains plots of the fitted quadratic regression line, for all of the 

species. It is apparent from the plots, that ∆E does indeed increase at a decreasing rate. 

This tendency is especially pronounced in aspen. Table 6.9 shows the parameters and r2 

values of the second order polynomial regression, for the three species. This table 

contains the slope and r2 values of a linear regression equation, too (y0 = 0). The 

coefficient of determination values indicate that the quadratic model performs better for 

aspen. Even though the second order model does not present significant improvement for 

the other two species, it probably approaches physical reality better. 
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6.2.2 Validation by static tensile MOE measurements 

∆E was calculated for each densified specimen, using its measured static MOE 

value, and the MOE of the undensified control, as Ed and Eo, respectively, in Equation 

6.4. Figure 6.15 shows the increase of the static MOE of yellow poplar as a function of 

the measured densification, in the longitudinal direction. The data points exhibit a similar 

trend as observed in the previous section; MOE increases at a decreasing rate. This 

justifies the use of the second order regression model described in section 6.2.1, which is 

included on Figure 6.15. Table 6.9 shows the parameters of the curve, along with that of 

the linear regression. 

It is apparent from the results that the stress-wave timer indicated a higher MOE 

increase than did static testing, at any densification level (Figure 6.16.) The most likely 

explanation for this phenomenon is that a slight modification, applied to the stress-wave 

setup before testing the densified specimens, improved the coupling of the accelerometers 

to the material. This, in turn, decreased the measured propagation times, and introduced a 

systematic error in the dynamic MOE measurement.  

Unfortunately, static testing results apply to yellow-poplar veneer only, in the 

longitudinal direction. A comparison of the measured static and dynamic MOE increase 

of yellow-poplar, as a function of densification, provided a modification factor that can 

be used to adjust the densification curves presented in section 6.2.1. One way to calculate 

such a factor is derived in APPENDIX D. The calculation resulted in a modification  

factor of 1.24. Dividing the coefficients b1 and b2 by this number (that is, in  

effect, decreasing the prediction at any densification level by the same factor) 
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results in more realistic ∆ρ ~ ∆E curve for yellow poplar, as shown on Figure 6.16. 

Because static densification curves are not available for aspen and red oak, their 

parameters can be corrected using the same factor. 

 

6.3 Mechanical properties of the composites 

6.3.1 Physical properties of the composite lumber 

Table 6.10 provides the statistical summary of the measured physical properties 

of LVL and PSL. This table contains the moisture content, specific gravity and weight 

density of the composites at the standard environmental conditions (21°C, 65% RH), in 

which the small clear (shear and compression) specimens were kept. It also shows the 

moisture content of the bending specimens, which were conditioned using a different 

environment. 

 

Table 6.10 – Summary statistics of the physical properties of LVL and PSL 

  LVL  PSL 

 
N 

 Mean s  Mean s 

21°C, 65% RH  
Moisture content 30  12.06 0.22  11.36 0.11 
Specific gravity 30  0.50 0.01  0.60 0.01 
Density ( kg/m3 ) 30  566 11  673 16 

25°C, 45% RH  
Moisture Content 10  10.65 0.29  9.79 0.26 
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6.3.2 Bending MOE of LVL and PSL 

Table 6.11 provides the statistical summary of the measured flatwise and 

edgewise bending MOE of LVL and PSL. Pairwise t-tests failed to show statistically 

significant differences between the flatwise and edgewise MOE, for either of the 

composite types. Another t-test indicated a statistically significant difference between the 

MOE of LVL and PSL. Analysis of variance on LVL’s bending MOE provided the 

within- and between panel variance for LVL, which was 0.634 GPa2 and 0.456 GPa2, 

respectively (for the calculations see APPENDIX B.) 

As Table 6.11 shows, LVL has a higher bending MOE than does PSL, in spite of 

the higher average densification of the latter. This may be due to several factors, such as 

the imperfect orientation of the strands, strand damage during hot pressing, or weaker 

gluelines in PSL, caused by its less regular structure. 

Figures 6.17 a and b show the relationship between the edgewise and flatwise 

bending MOE of LVL and PSL, respectively. As the low r2 values indicate, the 

correlation between the two parameters is relatively weak. This fact can be explained by 

the laminate theory. As the orientation of a beam changes, the distance of some 

 

Table 6.11 – Flatwise and edgewise bending MOE of LVL and PSL (N=20) 

 LVL  PSL 

 Eedge 
(GPa) 

Eflat 
(GPa) 

 Eedge 
(GPa) 

Eflat 
(GPa) 

Mean 13.22 13.36  12.82 12.57 
s 1.21 0.72  0.75 0.57 
Min 11.85 12.20  11.18 11.64 
Max 15.90 15.16  13.81 13.92 
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constituents from the neutral plane changes, too, therefore their importance in 

determining the beam’s overall bending MOE increases or diminishes. In some beams, 

stronger components are more deterministic in edgewise application, while weaker 

strands gain importance in flatwise orientation, or vice versa. It is probable that the slope 

of the regression line in PSL, which differs from unity considerably, is a result of this 

weak association, rather than a reflection of physical reality. 

 

6.3.3 Orthotropy of shear strength 

Table 6.12 contains the summary statistics of the measured shear strength of LVL 

and PSL at every combination of load and strand/layer orientation that the study 

incorporated. The examined composites exhibited similar tendencies of out-of-sheared-

plane failure, as did solid wood. Shear strength results reported in Table 6.12 should, 

therefore, be treated as apparent values.  

Because the test did not include every angle combination, general tendencies are 

hard to observe in the data. Shear strength values typically decreased with increasing load 

orientation (ϕ’). When load was applied in the longitudinal (x) direction, peak shear 

strength was experienced at 75° strand or layer orientation (θ’), in both LVL and PSL. 

This peak is especially pronounced in LVL. A similar tendency is observable in solid 

yellow-poplar timber (see Table 6.2 and Figure 6.3 a.) 

Statistical data analysis included two-way ANOVA for the two composite types. 

Results indicated significant load and layer/strand orientation effect in both materials. 

The incomplete statistical design did not allow the assessment of the interaction effect. 
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Table 6.12 – Summary statistics of the experimentally determined orthotropic shear strength of LVL and PSL 

LVL PSL
ϕϕϕϕ’ °°°° θθθθ’ °°°°

ττττ
(MPa)

s
(MPa)

min
(MPa)

max
(MPa) N a ττττ

(MPa)
s

(MPa)
min

(MPa)
max

(MPa) N

0 0 6.77 0.62 5.67 7.47 9 6.59 0.84 5.77 8.14 9
0 15 6.55 0.99 4.64 7.92 9 6.33 0.78 5.52 7.64 9
0 30 5.95 0.79 5.16 7.11 9 5.99 0.60 5.10 6.94 9
0 45 6.17 1.29 4.32 8.30 9 7.38 1.00 6.04 8.80 9
0 60 6.55 1.26 4.75 8.68 9 7.45 1.13 5.28 8.77 9
0 75 11.04 1.10 9.27 12.42 9 8.33 0.58 7.40 9.38 9
0 90 7.09 1.27 5.39 8.62 9 7.79 1.25 6.23 9.76 9

15 0 6.77 1.02 5.33 8.45 9 6.12 0.81 5.30 7.58 9
30 0 4.95 1.02 2.78 5.95 9 4.96 1.60 1.05 6.12 9
45 0 4.30 0.71 3.08 5.57 9 4.22 0.34 3.64 4.75 9
60 0 3.33 0.50 2.61 4.19 9 3.26 0.86 1.60 4.66 9
75 0 2.49 0.35 2.08 3.09 9 2.69 0.64 1.96 3.88 9
90 0 2.80 0.40 2.40 3.48 9 2.15 0.26 1.85 2.74 9

15 90 6.52 0.48 5.84 7.32 9 7.72 1.68 4.37 9.57 9
30 90 5.52 0.59 4.21 6.29 9 8.28 2.27 3.83 12.10 9
45 90 4.97 0.63 3.90 5.69 9 4.64 0.47 3.92 5.25 9
60 90 3.97 0.65 3.04 5.41 9 4.21 0.43 3.61 4.76 9
75 90 2.91 0.41 2.44 3.77 9 3.35 0.33 2.92 3.82 9
90 90 3.04 0.29 2.73 3.70 9 2.94 0.47 2.16 3.66 9

90 45 2.58 0.40 2.04 3.07 8 3.09 0.43 2.05 3.55 8
a – sample size
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The effectiveness of the three prediction models presented in section 4.1.1, was 

evaluated, using r2 analysis (Equation 6.1.) Table 6.13 shows the r2 values associated 

with the three models. This table also indicates the n values used in the Modified 

Hankinson formula (Equation 4.7), which were established by curve fitting, using the 

whole experimental database. Figure 6.18 shows the prediction of the orthotropic tensor 

theory and the modified Hankinson formula for both composite types in a three-

dimensional Cartesian coordinate system, along with the experimental mean values, to 

facilitate visual appraisal. 

The results show that the orthotropic tensor theory and the modified Hankinson 

formula are suitable for describing the orthotropy of wood based composite lumber. The 

latter fits experimental values, because it can predict high shear strength values at  

ϕ = 15°, which occur in LVL and PSL, as well as solid wood. Both model provided 

relatively low r2 values, when predicting the shear strength of LVL. Figure 6.18 reveals 

the reason for this; the models were unable to estimate the high shear strength values 

experienced in the longitudinal direction, at θ’=75°. Apart from this point, both models 

provide excellent fit to the experimental shear strength of LVL. 

 

Table 6.13 – Coefficients of determination provided by the various prediction models 

Modified Hankinson 
formula 

Species Orthotropic 
tensor theory 

r2 

Quadratic 
formula 

r2 n r2 

LVL 0.68 0.66 2.17 0.69 
PSL 0.59 0.55 2.74 0.79 

n ! the power in the Modified Hankinson formula  
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 The predictions of the Quadratic formula were, again, inferior to those of the 

other two models. It appears that, while this formula might be best to describe the 

theoretical shear strength of wood and composite lumber, the other theories approach 

apparent shear strength values, measured by traditional methods, better. 

 

6.3.4 Orthotropy of compression elasticity 

In the duration of the compression tests (up to 0.1 in displacement), very few 

specimens failed or reached the stress plateau indicated in Figure 6.4 b. For this reason, 

compression strength is unavailable for the composites. Specimens with sloping grain 

that had been re-glued to provide the necessary specimen length, did not show apparent 

signs of shear dislocation along the glueline. Specimens that did reach failure were 

sheared inside the composites, rather than along this interface. This lead to the conclusion 

that displacement data was not significantly influenced by the practice of re-gluing, and 

that collected data should produce valid MOE values.  

Table 6.14 provides the summary statistics of the compression MOE of LVL and 

PSL in the six measured directions. Similarly to the elastic properties of solid wood, 

composite MOE dropped considerably between ϕ’ = 0° and ϕ’ = 45°, but showed little 

change as load orientation increased further. Moreover, measured data indicates some 

negative correlation between layer/strand orientation (θ’) and compression MOE at ϕ’ = 

45° and ϕ’ = 90°. The low number of measurement points, however, does not warrant 

broad conclusions based on this observation.  
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Table 6.14 - Summary statistics of the compression MOE of the two composites  

  Ex 

(GPa) 
Ey 

(GPa) 
Ez 

(GPa) 

°
°

0
45E  

(GPa) 

°
°

90
45E  

(GPa) 

°
°

45
90E  

(GPa) 

Mean 11.87 0.44 0.37 0.87 0.84 0.29 
s 1.06 0.03 0.03 0.07 0.06 0.05 
Min 9.71 0.41 0.31 0.76 0.75 0.23 LVL 
Max 13.34 0.49 0.42 1.01 0.96 0.35 

Mean 13.20 0.48 0.23 1.08 0.64 0.30 
s 2.09 0.07 0.03 0.11 0.05 0.03 
Min 10.71 0.39 0.19 0.86 0.55 0.25 PSL 
Max 17.28 0.60 0.28 1.25 0.73 0.36 

 

The ANOVA procedure could not be directly applied to composite MOE data, 

because of the severe inequality of variances. A logarithmic transformation made the 

variance of the different groups more homogeneous. Two-way Analysis of Variance, 

executed using the transformed data, showed that variations both in load and in 

strand/layer orientation caused statistically significant differences in the compression 

MOE of LVL and PSL (see APPENDIX B.) 

The compression MOE of LVL and PSL in the longitudinal (x) direction is 

significantly higher than that of their raw material (yellow-poplar.) The slightly better 

performance of LVL was expected, because of some densification present in this 

composite. In PSL, strands are not aligned perfectly in the longitudinal direction, which 

reduces the MOE value, but the high level of densification improves the MOE 

significantly. The particular composite used in this study also includes 25% southern 

yellow pine material (see section 5.3.1), which is likely to have improved the MOE 

further. This explains why PSL performed better than solid yellow-poplar wood and LVL 

in terms of compression elasticity.  
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In the other directions, the composites’ MOE values are either comparable to or 

worse than those of yellow-poplar. This was unexpected, since the same tendencies 

outlined above should lead to higher MOE values in these directions. 

 

6.4 Composite geometry 

6.4.1 Geometry of the raw materials 

Table 6.15 summarizes the thickness statistics of aspen, red oak and yellow-

poplar veneer. Average veneer thickness was somewhat lower than the target peeling 

thickness of 3.2 mm. The reason for this is shrinkage during the drying of the material. 

The magnitude of shrinkage depends on the specific gravity of wood (Siau 1995), which 

is different for the three species. This explains the difference between the mean thickness 

values. 

Figure 6.19 shows the histograms created from the thickness measurements. The 

overlaid probability density functions were chosen based on the ranking provided by 

ExpertFit®. The figure also indicates the type and parameters of the chosen statistical  

 

Table 6.15 – Summary statistics of the thickness of veneer sheets manufactured from the 
different species. (Thickness values are in mm) 

 Aspen Red oak Yellow-poplar 

Mean 3.07 3.05 3.12 
s 0.08 0.09 0.09 
Median 3.07 3.05 3.12 
Minimum 2.82 2.85 2.82 
Maximum 3.25 3.28 3.28 
Skewness -0.586 0.029 -0.833 
Sample size 80 84 84 
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Figure 6.19 – Statistical distribution and probability density function of the veneer 
thickness for the three species 
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distributions, and contains histograms created by simulating 1000 random deviates for 

each parameter. Visual evaluation confirmed the good performance of these distributions 

to describe the data, except for yellow-poplar veneer. In this species, thickness values 

concentrate in the vicinity of 3.12 mm, while measurements are scarce around 3.17 mm. 

There seems to be no theoretical reason behind this phenomenon, which is probably due 

to random variation in the data. It was concluded that the plotted Weibull density 

function represents the experimental values well, despite this anomaly. 

 

6.4.2 Geometric properties of LVL 

The thickness of the layers in LVL did not exhibit very high variation throughout 

the cross-section (Figure 6.20), although one-way ANOVA showed significant 

differences between the layer thicknesses. Tukey’s multiple comparison test indicated 

statistically significant differences between the thickness of the two outside layers on 

both sides, and that of the remaining layers. This is in accordance with findings reported 

in the literature, that hot pressing causes more densification in the faces than in the core 

material of composites (Harless et al. 1987, Xu and Winistorfer 1996, Song and Ellis 

1997.) Based on these results, layer thickness data was pooled into two groups: outside 

and core layer thickness. Table 6.16 provides the most important statistical parameters of 

the two groups, as well as those of overlap length and distance (λ and δ) in LVL.   

Figure 6.21 contains histograms generated from the experimentally measured 

database, together with fitted probability density functions that were deemed best for 

describing the actual values. The plotted functions and simulation results seem to follow 

the experimental data distributions well.  



6   RESULTS AND DISCUSSION 114 

 

 

 

Table 6.16 – Summary statistics of the geometric parameters of LVL 

 Outside layer 
thickness  

(mm) 

Inside layer 
thickness  

(mm) 

Overlap 
length  

(λ , mm) 

Distance between 
overlaps  
(δ , mm) 

Mean 2.76 2.95 49.00 165.02 
s 0.14 0.15 14.24 14.93 
Median 2.76 2.93 48.80 166.16 
Minimum 2.48 2.53 21.71 93.19 
Maximum 3.09 3.38 90.02 206.68 
Skewness -0.08 0.01 0.31 -0.80 
Sample size 44 121 148 145 
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6.4.3 Geometric properties of PSL. 

Table 6.17 summarizes the statistical parameters of the geometric properties of 

PSL. The sample size of strand number and average strand thickness determination was 

relatively low, due to the difficulties involved in determining these parameters. The mean 

values of strand angle and strand orientation (α and β) were slightly different from the 

expected value of zero. This might be due to random error, but could also be the result of 

systematic deviations introduced during manufacture. 

Figure 6.22 comprises the experimental histograms and the overlaid best fit 

probability density functions. The normal distribution was found to work well for every 

geometric parameter of PSL, except for u, where the function does not fit experimental 

data well. This seemingly bad fit is a result of the very limited sample size of the strand 

number determination. Because of the low number of samples for this parameter, it is  

 

Table 6.17 – Summary statistics of the geometric parameters of PSL 

 

 

Strands/in2 
(u) 

 

Strand 
thickness  
(t, mm) 

Strand angle 
(α °) 

Strand 
deviation 

(β °) 

Mean 11.64 2.13 0.03 2.99 
s 0.36 0.37 4.67 14.71 
Median 11.65 2.15 0.00 4.00 
Minimum 10.81 1.38 -12.00 -45.00 
Maximum 12.06 2.78 20.00 45.00 
Skewness -1.34 -0.14 0.16 0.45 
Sample size 10 30 300 120 
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difficult to determine if a particular distribution describes experimental values 

adequately. The normal distribution was assumed to give a good representation of the 

number strands per in2. Histograms created from 1000 simulated random deviates for 

each parameter agree with experimental distributions reasonably well, except for that of 

u. 

 

6.4.4 Probability density functions 

Some of the probability density functions used in the previous sections are used 

frequently to describe the distributions of stochastic variables (e.g. normal or Weibull 

distribution.) Others, like the Johnson SU or the Extreme Value distributions are less 

familiar. Interested readers can find further information concerning these distributions in 

Law and Kelton (1993) or Law and Vincent (1999).  
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7 MODEL DEVELOPMENT AND VALIDATION 

This chapter describes the creation of four separate models for the simulation of 

bending and orthotropic compression MOE of LVL and PSL, and their verification 

against the experimental data in sections 6.3.2 and 6.3.4. The models are based on 

principles of static simulation (Law and Kelton 1993), and deterministic and stochastic 

variables originated almost exclusively from the experimental results provided in  

chapter 6.  

 

7.1 Model development 

Simulating the elastic properties of LVL and PSL consists of generating a virtual 

beam section that contains several elements, each with certain geometric and orthotropic 

elastic properties. The geometry and elasticity of the constituents are governed by 

deterministic and probabilistic input variables. 

 

7.1.1 Simplifying assumptions 

To simplify the simulation task, composites are treated as prismatic beams; that is, 

their cross-section does not change throughout the length of the beam. Geometrically, 

constituents are represented by their cross-sections. Further simplifications used in the 

models include the following items: 

• Veneers used for layers and strands are peeled perfectly tangential to the annual ring 

(i.e., their plane is LT); 

• A continuous glueline provides perfect adhesion between the layers or strands; 
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• The applied glue does not alter the MOE of the layers or strands significantly; 

• The grain orientation of an LVL layer is always parallel with the longitudinal axis of 

the beam; the grain orientation of a PSL strand is always parallel with the longitudinal 

axis of the strand; 

• The layup is random; the MOE values of the layers or strands are independent of their 

position; 

• The thickness of a layer in LVL is constant; irregularities, such as crushed-lap joints 

that connect two veneer sheets in the same layer, are disregarded; 

• PSL strand cross-sections are rectangular in shape; strands are not bent or distorted; 

• PSL strand width is constant (25 mm); 

• The densification of a PSL strand is independent from its position within the billet. 

None of the above assumptions are fully justified in reality. There is reason to 

believe, however, that these simplifications do not bias simulation results seriously, while 

reducing the programming complexity and execution times considerably.  

 

7.1.2 Simulation of the constituents’ geometric parameters 

Simulating the geometric properties of LVL included the following steps: 

• Establishing the number of layers. This is a deterministic variable that depends on the 

particular material being simulated. In the present case, the number of layers was 15. 

• Assigning original and final thickness values to each layer from their respective 

probability distributions. 

• Calculating cross-section (Ai) and the 2nd order moment of inertia around the 

symmetry axis of the composite (Ii), for each layer. (The width of the beams can be 

any value; because the model assumes no horizontal variation of any kind, it does not 

impact simulation results.) 
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The simulation of the cross-sectional geometry of PSL involved the following 

procedures: 

• Choosing the y and z cross-sectional dimensions; 

• Simulating the number of strands. In PSL, the number of constituents is a random 

variable, established by generating the number of strands per in2 (u), and multiplying 

this number by the cross-sectional area; 

•  Assigning original and the projected final thickness (to and t), longitudinal angle (α) 

and cross-sectional orientation (β) values to each strand. (The model neglects the 

deviation of the strand’s longitudinal axis from the xy plane, which is small in 

reality.) The width of the strands is 25 mm, except for one strand, which has a smaller 

width. This strand reflects the fractional part of the strand number. For the calculation 

of the projected strand width and the actual strand thickness see APPENDIX C; 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.1 – The systematic arrangement of the strands in PSL 
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• Arranging strands in a random order in both the y and the z directions. To achieve an 

even coverage, strand centroids were distributed uniformly in a systematic way 

according to this order, rather than randomly (Figure 7.1);  

• Calculating Ii both flatwise and edgewise, for each constituent, as well as their cross-

sectional area (Ai). Strands that protrude beyond the boundary of the beam cross 

section are handled according to the torus convention (Hall 1988). For an explanation 

of this principle, see Figure 7.1. 

 

For both composite types, Ii values are calculated around the neutral axis of the 

beam. The neutral axis in a homogenous material goes through the centroid of the cross-

section. If the compression and tension Moduli of Elasticity are different (as they are in 

wood), the neutral axis might shift from this position. The simulation model assumes that 

the neutral axis is same as the symmetry axis of the cross-section. This reduces 

simulation times significantly, introducing only minor inaccuracies in the results. 

The model breaks Ii values of each strand or layer into two components; IC and IT , 

the moment of inertia of the portion of the cross-section subjected to compression and 

tension, respectively. If a strand or layer is located entirely in the compression or tension 

zone (strands a and b on Figure 7.2, respectively), its IT or IC will be equal to zero, 

respectively. If the cross-section of a constituent crosses the neutral axis (strand c) or – in 

PSL – protrudes outside of the beam cross section (strand d), both its IT and IC will be 

different from zero.  
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7.1.3 Simulation of the composites’ geometric and physical properties 

To validate the simulated cross-sectional structure, certain geometric properties of 

the composites were calculated from the modeled parameters. In LVL, this included the 

panel thickness, which is equal to the combined thickness of the layers. For PSL, the 

combined cross-sectional area (ΣAi) and combined flatwise and edgewise 2nd order 

moment of inertia (ΣIi Flat and ΣIi Edge) of the strands were calculated. 

Simulation of the composites’ density provided another opportunity to validate 

the simulated geometry. This involved generating original density values for the 

constituents, using the experimental data shown in Table 6.1. Because the limited sample 

size of the density measurements prevented reliable probability density function 

determination, normal distribution was assumed. Using the simulated density values, the 

a. 

b. 

d. 

c. 

Tension zone 

Compression zone 

Figure 7.2 – Strands situated at various positions in a PSL cross-section 
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weight of every constituent was calculated for a 25 mm (1 in) long beam section. The 

ratio of the combined strand weight and the volume of the beam section equals to the 

density of the beam. 

 

7.1.4 Simulation of bending MOE  

Equation 4.18 requires the simulation of the modulus of elasticity (Ei) for each 

constituent. Since the MOE in tension can be very different from that in compression, 

each LVL layer or PSL strand is assigned both a compression and a tension MOE value. 

In LVL, the grain direction of the layers always runs parallel with the longitudinal 

axis of the beam; that is, the direction in which compression and tension stresses act. 

Compression and tension MOE can be simulated using the statistical distribution of the 

longitudinal MOE (EL). PSL strands are running at a (typically small) inclined angle to 

the longitudinal axis of the beam, and orthotropic theories can estimate their compression 

and tensile elastic parameters. 

Compression MOE can be simulated by supplying Equation 4.10 or Equation 4.12 

with the grain- and ring orientation of the load relative to the individual strands, as well 

as the simulated elastic constants (EL, ER, ET, °
°

0
45E , °

°
90
45E , °

°
45
90E  ) that the equations require. 

(Both of these equations are applicable for MOE, as well as compression strength.) 

Tensile MOE is generated in two steps. First, the model simulates the dynamic MOE 

using the combination provided in Equation 6.3, based on the strand’s grain angle (ϕ = α) 

and the simulated dynamic elastic parameters at 0°, 45° and 90° grain angles. Following 

that, it converts the simulated value into tensile MOE using the second order regressive 

relationship between the dynamic and static MOE (Figure 6.13 b.)  
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Because the sample size of compression and dynamic MOE measurements was 

not large enough to allow a reliable statistical distribution determination, the elastic 

constants were assumed to be normally distributed, and simulated accordingly. The 

model does not account for the possible correlation between the MOE values of wood in 

the different anatomical directions. This correlation probably exists, but, since the 

variation of MOE is very small in the non-longitudinal directions, its effect is likely to be 

negligible. 

The compression and tensile MOE of the constituents, as simulated above, reflect 

their elastic properties before the composite goes through the consolidation process. 

While in the press, the layers and strands experience densification, which, as shown in 

section 6.2, modifies their MOE values. The model simulates the MOE increase of each 

constituent due to densification, using the experimental relationships shown on Figure 

6.14, modified with the factor calculated in section 6.2.2. 

Using the simulated densified compression and tension MOE, along with the IT 

and IC values calculated for each constituent, laminate theory can be written in the 

following form: 

 ( )
I

IEIEE CiCiTiTi +Σ= , [7.1] 

where: ETi, ECi - tensile and compression MOE of the ith strand or layer, respectively; 

 ITi, ICi - moment of inertia of the constituent’s portion subjected to tension and 
compression, respectively; 

 E, I - effective bending MOE and moment of inertia of the beam. 

The above principles can be used to create models that can simulate the bending 

MOE of LVL and PSL beams in both edgewise and flatwise application. 
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7.1.5 Simulation of the orthotropic compression MOE 

Simulation of compression MOE in a certain direction is a similar process to 

modeling bending MOE. The differences are, as follows: 

1. The model assigns only a compression MOE to every constituent. EC is calculated 

using Equation 4.10 or 4.12. The grain and ring angles for each component relative to 

the compression load are calculated from ϕ’ and θ’ (load orienation and strand/layer 

orientation, as defined in section 5.3), and, in the case of PSL, α and β. (For the 

details of this calculation, see APPENDIX C.) 

2. Instead of the moment of inertia, the volume of each strand or layer is calculated, as 

the product of its cross-sectional area and the length of the simulated beam section. 

3. Equation 4.19 is used to calculate the compression MOE of the simulated composite 

in the given direction. 

 

7.1.6 Methods and procedures 

The FORTRAN 90 programming environment was used to create four simulation 

models, based on the principles described in the preceding sections. The source code 

includes four programs, as well as several different functions to generate random data 

from different distributions, simulate the orthotropic tensile and compression MOE along 

with the densification effect, etc. A module stores the species-specific input parameters. 

The simulation can be easily extended to include new species by adding their parameters 

to this module. APPENDIX E contains the source code and documentation of the programs, 

functions, and the module comprising species-specific information. 
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Validation of the bending models involved simulating twenty yellow poplar LVL 

and PSL beams, and calculating their MOE both in flatwise and edgewise orientations. 

The cross-sectional dimensions of the simulated PSL beams were the same as the target 

dimensions of the experimentally measured specimens. The Monte Carlo simulation was 

repeated twenty times, using a different random seed for each of the 400 beams. To 

ascertain complete independence of the simulated beams, the stream of random integers, 

used as seeds in these simulations, were provided by the SigmaPlot® scientific graphing 

program, rather than FORTRAN. Compression model validation was similar to the above 

procedure, but it included 20 groups of only 10 simulated specimens in the six 

experimentally investigated orientations.  

Some further practical considerations that were used in creating the final models 

included the following points: 

• Although the orthotropic tensor theory (Equation 4.10) provided best fit to the 

orthotropic compression MOE of hardwoods by r2 analysis, in the case of yellow-

poplar’s it estimates unrealistically high MOE when both grain and ring angles are at 

low levels (Figure 6.7.) These orientations are especially important in PSL strands, 

when the beam is subjected to bending or longitudinal compression. Thus, instead of 

the equation based on orthotropic tensor theory, the three-dimensional Hankinson 

formula (Equations 4.11 and 4.12) was used in the model. 

• Most of the probability density functions that describe the mechanical and geometric 

parameters are unbounded. This might result in generating unrealistically low 

simulation results (e.g. negative MOE, or final thickness values that are higher than 

the original thickness of the constituents.) Certain safeguards are built in the routines 

and functions to exclude such values. 
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• In PSL, the number of strands in a cross-section and the thickness of the strands are 

not independent variables. Assessing the correlation structure, however, would have 

required immense experimental work. The model disregards the relationship between 

these variables, which can result in unrealistically high or low compound cross-

sections of the strands – sometimes exceeding the cross-section of the beam. This 

should clearly not be allowed. However, discarding beams with such cross-sections 

could bias the average strand number per unit cross section, as well as the average 

strand thickness. One solution for this problem is to reject beams with too low, as 

well as too high combined strand cross-section. From trial simulations it was 

established that eliminating beams with ΣAi below 0.95 times the beam cross section 

maintains the average values of these parameters. If ΣAi is smaller than 0.95 A or 

higher than A, the programs re-simulate the beam. 

 

7.2 Model validation 

Model validation happened through the comparison of the simulated and actual 

geometric, physical and mechanical parameters of the composites. Experimental LVL 

beams consist of 100% yellow-poplar material, and the model was set up accordingly. 

PSL contains 25% southern yellow pine material. Unfortunately, input parameters for this 

species were unavailable. The simulation was based on 100% yellow-poplar material, 

which introduced some inaccuracy in the results. The cross-sectional dimensions of the 

simulated PSL beams were 140 by 75 mm (5.5 by 3 inches), the same as the target cross-

section of the experimental beams used for model validation (section 5.3.2.) 

The purpose of standard statistical tests is typically to show that two groups of 

numbers are statistically different, and proof of the opposite is hard to achieve. Even the 

so-called goodness-of-fit type tests might fail to show significant differences if a small 
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number of specimens is used, while rejecting the assumption of equality at large sample 

sizes, even if the differences are minute. Because simulated and experimental results are 

never exactly the same, good fit shown by these tests is often due to lack of power, rather 

than an indication of actual agreement between the two distributions (Law and Kelton 

1993.)  

The present validation study does not seek to prove that simulated and 

experimental results are exactly the same. The goal is to show if a reasonable agreement 

exists between the two groups of data, based on engineering judgement, rather than 

statistical proof.  

 

7.2.1 Geometric and physical properties of LVL and PSL 

Table 7.1 comprises the simulation results of the geometric and physical 

properties of the composites. Results reported here are average values of the mean, 

standard deviation, minimum, maximum and skewness calculated from the twenty Monte 

Carlo simulations, containing twenty beams each. Individual statistics for each simulation 

run are provided in APPENDIX F.  

 

Table 7.1 – Simulated geometric and physical properties of LVL and PSL (experimental 
LVL thickness statistics are also included) 

 LVL  PSL 

 Tsim 
(mm) 

Texp 
(mm) 

ρρρρ    
(kg/m3) 

 ΣΣΣΣAi 
(cm2) 

ΣΣΣΣIi Edge 
(cm4) 

ΣΣΣΣIi Flat 
(cm4) 

ρρρρ    
(kg/m3) 

Mean 42.96 43.56 511  103.7 1687 498.3 673 
STD 0.50 0.15 10  1.4 23 6.8 11 
Min 42.05 43.13 492  101.4 1649 486.9 652 
Max 43.85 43.97 530  106.1 1726 509.7 694 
Skewness 0.005 0.013 -0.100  0.029 0.029 0.001 -0.037 
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In LVL, simulated thickness and density is somewhat different from the 

experimental values. (Table 7.1 includes the experimental thickness statistics and Table 

6.10 contains the measured density values.) Simulated thickness values are somewhat 

smaller in average, but include nearly the whole range of the experimental values. 

Simulated density is significantly lower than the experimentally measured values. This 

might be caused by several different factors, such as the dry material content of the glue, 

high-density knots in the veneers and the presence of the crushed-lap joints. The model 

does not account for the effect of these factors. 

The simulated combined cross-sectional area of PSL is within the range of 95% to 

100% of the cross-section of the beam (106.5 cm2), according to the restrictions 

described in section 7.1.6. The average cross-sectional area was 97.4% of the beam cross-

section. The relationship between the combined edgewise and flatwise 2nd order moment 

of inertia of the strands and the respective I values of the beam (1731 and 515.1 cm4), 

showed a similar relationship. The combined cross-sectional area and moment of inertia 

of the strands are usually slightly smaller than those of the beam, because PSL contains 

some void volume, due to the slightly imperfect packing of the strands. Visual appraisal 

showed that the simulated 95 ~ 100% coverage is reasonable for PSL. The simulated 

density, which shows excellent agreement with actual values in Table 6.10, further 

affirms the accuracy of the simulated geometric structure. 

Figure 7.3 demonstrates the similarity of the simulated and experimental cross-

sections visually. The simulated LVL cross-section (a) contains 15 layers with 

thicknesses generated from the appropriate statistical distributions, and is compared to an  
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Figure 7.3 – Experimental and simulated cross-sections of LVL (a) and PSL (b) 

a. 

b. 
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overlap-free experimental cross-section. The PSL cross-section (b) was created using the 

principles described in section 7.1.2, except for the horizontal distribution of the strands, 

which is optimized for the visual demonstration. Notice the black areas representing 

holes in the actual PSL cross-section. 

 

7.2.2 Validation of the bending MOE simulation 

Table 7.2 contains the statistical summary of the bending MOE simulation results 

for LVL and PSL. Values are, again, averages of twenty simulation runs, detailed in 

APPENDIX F. Simulated values can be compared to the experimental bending MOE of 

LVL and PSL in Table 6.11. Figure 7.4 demonstrates the relationship between the 

simulated and experimental mean bending MOE values.  

The simulated bending MOE of LVL is somewhat lower than the experimental 

values. The differences, however, are not very pronounced, especially in flatwise 

application, where, for example, simulation nr. 5 (Table E.4) provided a mean bending 

MOE very similar to the measured average value. Simulated beams were slightly stronger 

in flatwise than in edgewise application, which also follows the actual pattern. It appears 

that, despite minor differences, the simulation model estimates the MOE of LVL with 

reasonable accuracy. 

The simulation results for the bending MOE of PSL are significantly higher than 

the experimental values reported in Table 6.11. There are several plausible explanations 

for this inaccuracy. PSL strands go through a considerable amount of distortion and 

disintegration during the hot pressing procedure, which might reduce their tension and 
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Table 7.2 – Simulated edgewise and flatwise bending MOE of LVL and PSL  

 LVL  PSL 

 Eedge 
(GPa) 

Eflat 
(GPa) 

 Eedge 
(GPa) 

Eflat 
(GPa) 

Mean 12.70 12.91  14.54 14.46 
s 0.41 0.79  0.40 0.34 
Min 11.95 11.40  13.78 13.83 
Max 13.49 14.46  15.29 15.10 
Skewness 0.063 0.100  -0.052 0.041 

 

Figure 7.4 – Comparison of the experimental and simulated flatwise and edgewise 
bending MOE of LVL and PSL  

(box plots for the simulation results are based on all 400 generated values.) 
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compression MOE. The imperfect stacking of the strands might lead to weakened 

adhesion or glueline discontinuities, which would decrease the bending MOE, because 

the gluelines cannot effectively transfer loads from one strand to another. The fact that 

the model does not account for southern yellow pine strands in experimental beams might 

further bias results. Although these strands are supposed to be stronger than yellow-

poplar, nothing is known about the effect of densification on the MOE of southern yellow 

pine veneer, which might conceivably be less pronounced than in yellow poplar. The 

above effects combined might account for the differences between the simulated and 

experimental results.  

Information from the manufacturer also revealed that quality control 

measurements indicate significantly higher bending MOE values than the values in Table 

6.11. It is possible that, for some reason, available beams were inferior to manufactured 

PSL material in general. In this case, simulation results might represent the composite 

better than the measured elastic parameters reported in section 6.3.2. 

The degree of association between the simulated flatwise and edgewise MOE of 

LVL and PSL was assessed by calculating the regression parameters for each simulation 

run. The average of the r2 values for the two composites were 0.299 and 0.353, 

respectively. This agrees reasonably well with the r2 value of 0.342 for LVL, shown on 

Figure 6.17 a. The simulated r2 value for PSL is somewhat higher than the one 

experienced in reality. However, the r2 value of PSL was very variable between the 

simulation runs, and in some cases (e.g. simulation nr. 4 or nr. 8 – see Table E.18) it was 

very close to that shown on Figure 6.17 b.  
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7.2.3 Validation of the orthotropic compression MOE simulation 

The average statistical parameters of the twenty compression MOE simulations in 

the six chosen directions are shown in Table 7.3. APPENDIX F contains the statistics for 

each simulation run individually. Figure 7.5 compares the simulation results in each 

direction for LVL and PSL to the experimental results in Table 6.14. 

In terms of the longitudinal compression MOE – which is the most important of 

the six directions – the simulation performed exceptionally well for both composites. The 

longitudinal compression MOE of PSL is estimated with excellent accuracy, while that of 

LVL is only slightly underestimated. In other directions in the xy plane the simulation 

routines usually worked with reasonable accuracy. Outside of this plane the models 

significantly overestimated the MOE values. The reason for this is unknown. Since these 

directions are rarely of interest, the inaccuracy of the simulated results in these cases is 

not a very serious problem. 

It is important to mention that the standard deviation of the simulated MOE 

values was consistently smaller than that of the experimental data. One possible 

explanation of this inconsistency is random measurement error introduced in the 

compression MOE determination, which would increase the spread, but not bias the 

experimental values. One needs to exercise caution when interpreting the simulation 

results, or trying to establish allowable values from them.  
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Table 7.3 - Simulated compression MOE of LVL and PSL in six directions   

  Ex 

(GPa) 
Ey 

(GPa) 
Ez 

(GPa) 

°
°

0
45E  

(GPa) 

°
°

90
45E  

(GPa) 

°
°

45
90E  

(GPa) 

Mean 11.33 0.41 0.82 0.79 1.52 0.49 
s 0.46 0.01 0.03 0.02 0.06 0.02 
Min 10.61 0.39 0.77 0.75 1.43 0.47 
Max 12.11 0.43 0.87 0.83 1.61 0.51 

LVL 

Skewness 0.065 0.108 0.146 0.109 0.124 0.170 

Mean 13.34 0.54 1.02 1.06 1.90 0.64 
s 0.43 0.01 0.04 0.04 0.06 0.02 
Min 12.63 0.52 0.97 1.00 1.80 0.61 
Max 13.99 0.56 1.08 1.11 1.99 0.67 

PSL 

Skewness -0.139 -0.141 -0.053 -0.081 -0.035 -0.035 
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Figure 7.5 – Comparison of the experimental and simulated compression MOE  
of LVL and PSL in the six simulated directions 

(box plots for the simulation results are based on all 400 generated values.) 
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a. – LVL – simulated compression MOE b. – LVL – experimental compression MOE

c. – PSL – simulated compression MOE d. – PSL – experimental compression MOE

Figure 7.6 – Orthotropy diagrams created from the experimental and simulated 
compression MOE values of the composite materials 
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 Figures 7.6 a and b show the orthotropic compression diagrams generated from 

the simulated and experimental compression MOE of LVL, respectively, using the 

orthotropic tensor theory. Details c and d on this figure show similar diagrams for PSL. 

The simulated and actual compression MOE values are apparently very similar in the xy 

plane. Although the accuracy gets worse as the layer or strand orientation (θ’) increases, 

the overall efficiency of the models to predict the orthotropic compression MOE seems 

excellent. 

 

7.3 Two case studies 

To demonstrate the uses of the developed simulation models, two case studies are 

presented here. These procedures required minimal modification to the simulation 

models, consisting of simply changing some parameters. Other investigations may 

involve more significant programming tasks; however, using the principles described in 

section 7.1, the functions, and the module that contains species-specific information, 

described in APPENDIX F, one can easily model composite materials with completely 

novel designs, as well. 

 

7.3.1 Modifying the layup of LVL 

The first case study consisted of simulating new layup combinations for LVL. 

Seven new setups were simulated and compared to the original, all-yellow-poplar 

material. Table 7.4 shows the layup combinations. The first layup is the original material 
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Table 7.4 – The eight layup combinations; average edgewise and flatwise MOE 

Comb. 
code 

Layup1  Eedge  
(GPa) 

Eflat 
(GPa) 

1 YYYYYYYYYYYYYYY 12.70 12.91 
2 AAAAAAAAAAAAAAA 11.55 11.79 
3 OOOOOOOOOOOOOOO 12.39 12.59 
4 OOYYYYYYYYYYYOO 12.60 12.66 
5 OOOOYYYYYYYOOOO 12.54 12.62 
6 YYYYYYAAAYYYYYY 12.49 12.92 
7 YYYYAAAAAAAYYYY 12.18 12.86 
8 YYYYYAAAAAOOOOO 12.39 15.02 

1 A – quaking aspen ; O – red oak ; Y – yellow-poplar. The lefthand side is the tension zone in 
flatwise bending.  

 

Figure 7.7 – Flatwise and edgewise bending MOE of simulated LVL beams  
with various layups 
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used in chapter 7.2. The second and third combinations contain aspen and oak veneer 

only, respectively. In the fourth and fifth setup, oak veneer is substituted for the outside 

layers in the yellow-poplar LVL, while beams of type six and seven contain aspen 

material in the core. The reason to place oak on the outside and aspen in the core is to 

optimize the beams in flatwise bending, since oak is typically stronger, while aspen is 

weaker than yellow-poplar. The eighth variety is an asymmetric beam containing five 

layers of each species; aspen, red oak and yellow-poplar material placed in the core, in 

the compression zone and in the tension zone, respectively. 

Table 7.4 includes the average edgewise and flatwise bending MOE simulated 

using the different layup combinations. Figure 7.7 demonstrates the results in a graphical 

form. As expected, the all-aspen LVL has somewhat lower MOE values than the original 

yellow poplar material. For the oak beams, the simulation model also indicated a slight 

drop in the elastic parameters. The same pattern was true when red oak was placed in the 

outside two to four layers (combinations nr. 4 and 5.) This contradicts the expectations, 

because oak is generally considered stronger than yellow-poplar. However, damages 

sustained during the peeling process significantly reduce the tensile MOE of red oak, so 

that it will be even lower than that of yellow-poplar. This is the reason why bending 

MOE does not improve when red oak is substituted for yellow-poplar in a symmetric 

fashion. This is an indication that introducing red oak as a raw material for LVL 

manufacture might not be a viable solution for the industry. 

The addition of aspen material in the core of the yellow-poplar beam 

(combinations nr. 6 and 7) decreases the edgewise bending MOE proportionally to the 

volume fraction of the aspen veneers. The flatwise MOE, on the other hand, changes very 



7   MODEL DEVELOPMENT AND VALIDATION 141 

little. If only a few layers are added to the material, neither MOE value decreases very 

significantly. Thus, using aspen veneer might be a feasible way to diversify the raw 

material base of LVL manufacture. 

The edgewise MOE of layup nr. 8 is also slightly lower than that of yellow-poplar 

LVL. This is not surprising, since – as beams nr. 2 and 3 demonstrate – both aspen and 

oak tend to decrease the bending MOE of the composite. The flatwise MOE, however, 

shows a dramatic improvement in this case. The explanation of this effect is that oak 

material is located in the compression zone of the simulated beams. The compression 

MOE of solid oak timber, which is used in the simulation, is much better than that of the 

other two species. The damages that decreased the measured dynamic MOE of oak might 

or might not influence the compression MOE of the veneer. Caution is required, 

therefore, when drawing conclusions from the bending MOE simulated for beam nr. 8. 

 

7.3.2 Decreasing the variation of load and strand orientation in PSL  

The purpose of the second study was to demonstrate the improvement that could 

be achieved in PSL if the strand angle and strand orientation would be better controlled. 

The investigation consisted of simulating the flatwise and edgewise MOE values of PSL, 

while progressively reducing the scale parameter (standard deviation) of the distribution 

of strand angle (α) and strand deviation (β). The examined range was between 100% and 

0% of the scale parameters, i.e. decreasing the variance of α and β from their original 

level to no variation at all. The procedure assumed no change in the other parameters 

(e.g. strand thickness, the number of strands or the mean value of α and β.) 
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Figure 7.8 – The effect of the variance of α and β on the flatwise (a)  
and edgewise (b) bending MOE of PSL  
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Figures 7.8 a and b present the edgewise and flatwise MOE of PSL, respectively, 

as a function of the standard deviation of α and  β, expressed as a percent of the original 

variation. As these diagrams show, decreasing the deviation of β from its mean value has 

little effect on the MOE of PSL. On the other hand, changing the variance of α affects the 

elastic parameters very significantly. Bending MOE improves more than 12 % (nearly 2 

GPa), if the variation is completely eliminated. This is unfortunately not possible for 

PSL. However, if, by some innovative means, the standard deviation could be reduced to 

50%, it would still increase MOE values by 8.5 %, provided that the other parameters do 

not change.  
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8 SUMMARY AND CONCLUSIONS 

A comprehensive investigation including the raw materials, geometric structure, 

mechanical properties and simulation modeling of Laminated Veneer Lumber and 

Parallel Strand Lumber led to the following conclusions: 

• Orthotropic theories, developed through tensorial analysis, other theoretical 

considerations or empirical observations, estimate shear and compression strength, as 

well as compression and tensile elasticity of solid wood, as functions of grain and/or 

ring orientation, reasonably well. The orthotropic models can be used to describe the 

orthotropy of structural composite lumber, too, and in simulations that attempt to 

model the elastic properties of these materials. 

• The orthotropic tensile elasticity of veneers can be successfully evaluated using the 

dynamic (stress-wave) MOE. An investigation, that included stress-wave timing 

followed by static measurements in the 0°, 15°, 30° and 45° orientations, showed that 

a second order correlation function represents the relationship between dynamic and 

static MOE in this range. 

• Densification improves the MOE of hardwood veneers. The resulting functions show 

that MOE increases at a decreasing rate as a result of progressive densification, 

because of cumulative damages in the cell-wall structure. Quadratic densification 

functions described the relationship between density and MOE increase well. These 

functions can be used for simulating the effect of densification on the constituents of 

LVL and PSL. 

• The bending and compression MOE of structural composite lumber can be modeled 

based on the laminate theory, and the equality of external work and internal energy, 

respectively. These theories require the simulation of the geometric structure and 

orthotropic elastic properties of the constituents in LVL and PSL. Developed models 

contain many deterministic and stochastic input variables, which are generated using 

the Monte Carlo simulation technique. 
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• Simulation results usually agreed with the experimental bending and orthotropic 

compression MOE of LVL and PSL reasonably well. Some differences exist, 

however, in the bending MOE of PSL and in certain compression MOE values. 

Despite these discrepancies, developed models can be serviceable in estimating the 

effect of using different raw-materials or changing the geometric structure of the 

composites, as demonstrated by two case studies in chapter 7. The principles used for 

the simulations and the developed database make the simulation of completely novel 

designs relatively simple, as well. 
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9 RECOMMENDATIONS FOR FURTHER RESEARCH 

There are several ways through which the research described in this dissertation 

can be continued, improved upon or extended. The predictions of the presented models 

can be refined by: 

• Accounting for the changing cross-sections of the beams along its length. The cross-

section of PSL changes in the longitudinal direction; strand positions shift according 

to the strand angle (α), strands end and new strands are introduced, etc. In LVL, new 

veneer sheets are introduced, and connect to old ones through overlaps, where the 

number of layers temporarily increases. The models do not represent any of these 

realities in their current form. 

• The neutral axes of the beams do not exactly coincide with their symmetry axes. The 

determination of the actual neutral axes might improve the predictions provided by 

the models. 

• The effect of densification on the elastic parameters of the constituents is still not 

very well understood. Different initial moisture contents, pressing temperatures,  

pressing times, and their interactions may cause variable results at similar 

densification levels. A more comprehensive densification study, including several 

combinations of the above factors, could lead to more accurate simulation results. 

This would also require the simulation of heat and moisture conditions within the 

composite during hot pressing. Such simulations are possible, as demonstrated by 

several works (e.g. Humphrey and Bolton 1989; Zombori 2001). 

• Possible glueline imperfections and glue penetration might influence the MOE of the 

composites in various ways. A comprehensive study of these phenomena would 

greatly increase the models’ accuracy. Such studies, however, are very complex and 

time-consuming, and results might not be straightforward to apply in a simulation 

study. 
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• The strand-width in PSL, which is actually a random variable, is treated as a 

deterministic value in the simulation. Addressing this inconsistency would require 

little effort. However, the improvement in the simulated properties might not be very 

significant, since the geometric and physical parameters of the simulated beams 

already show good agreement with reality. 

 

Results and principles presented in the preceding chapters might provide a basis 

to extend the applicability of the simulations to other raw materials, composite types or 

mechanical properties: 

• Providing the physical and mechanical parameters, as well as assessing the effect of 

densification on the elastic parameters of other species that are or might be used in 

composite manufacture, can extend the uses of the models. If the necessary 

parameters are available, the model can easily incorporate further species. 

• Presently, there is one more composite lumber product on the US market that the 

present study did not incorporate. Studying the geometric structure and parameters of 

Laminated Strand Lumber might provide a way to simulate the elastic properties of 

this composite in a similar way as those of LVL and PSL. The constituents, 

manufacturing process, and geometric structure of this composite, however, might 

require significant modifications to the main simulation routines. 

• Innovative composite lumber designs might emerge, as well. Introduction of such 

composites requires considerable investment, which might not be realized if the 

composite fails to fulfill consumer requirements. Modifying the simulation routines 

can enable them to predict the MOE of the hypothesized composites, and forecast 

their mechanical performance at an early stage of development. 
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• Finally, it is the hope of the author that the presented work might trigger and aid the 

development of further simulations that estimate other mechanical properties of 

wood-based composite lumber, such as bending, compression or shear strength. 

Unfortunately, creating such models is less straightforward than the simulation of 

elastic properties; however, these properties are very important in many applications, 

and their estimation is possible, as demonstrated by various researchers. 
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APPENDIX A – DERIVATION OF THE ORTHOTROPIC TENSOR MODEL 

 

Using the elastic parameters of wood, the compliance matrix of an orthotropic 

material can be written in the following form:  
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where: Ei – modulus of elasticity of wood in the i anatomical direction; 

 Gij – shear modulus in the main anatomical planes, where i is the direction normal 
to the sheared plane and j is the direction of the applied load; 

 υij – Poisson ratio (i is the direction of passive strain and j is the direction of 
applied load. 

Using the relationships between the elastic parameters of wood, it can be shown 

that 
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where: °45
ijE  – The modulus of elasticity of wood in the ij plane, at a 45° direction 

between i and j. 
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Using the above relationship, the elements of the compliance matrix can be 

defined in a way that makes their experimental determination easier: 

 

The above matrix is a simplified two-dimensional representation of a four-

dimensional tensor. According to the transformation rules of a four-dimensional tensor, 

when the coordinate system is rotated around its origin, an element of the new tensor can 

be calculated using the above formula: 

 l
l

k
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j
j

i
iijkllkji tt '''''''' ββββΣ=  [A.4] 

where: ti’j’k’l’ – an element of the new tensor ( i’, j’, k’, l’ = x, y, z ) 
 tijkl – an element of the original tensor ( i, j, k, l = L, R, T ) 

 i
i 'β  – the length of the orthogonal projection of a unit vector in the direction of 

the i’th coordinate axis in the new coordinate system, on the ith axis in the 
old coordinate system (Figure A.1 shows three examples, where i’ = x 
and i = L, R, T.) 

Let the new coordinate system be chosen so that its x axis is aligned with the 

compression load, using the definition of ϕ and θ, given on Figure 4.5. In this case, 

transforming the first element of the tensor (tLLLL=1/EL), will provide the reciprocal of the 
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ion, i.e. the direction designated by ϕ and θ (txxxx = 1/Ex = θ
ϕE/1 ). The 

ires the determination of L
xβ , R

xβ , and T
xβ  only. Figure A.1 shows 

ese coordinates. Applying the transformation rule (Equation A.4) to 

the matrix provides the following formula for the calculation of the 

rection: 

Figure A.1 – The definition of L
xβ , R

xβ , and T
xβ . 
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 The derivation of the tensorial formula for compression strength is based on a 

similar transformation of the four-dimensional strength tensor. Ashkenazi (1978) defined 

the elements of the fourth order strength tensor according to the matrix below: 

Transforming the first element of the above matrix the same way as that of the 

compliance matrix, provides equation 4.10. 
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APPENDIX B – DETAILED RESULTS OF THE STATISTICAL PROCEDURES 
 
 
Table B.1 – ANOVA tables for the orthotropic shear strength of Appalachian hardwoods 

ASPEN 

Source DF Sum of Squares Mean Square P value 

Angle variation 48 1727 36.0 < 0.001 
Grain angle 6 1542 257.1 < 0.001 
Ring angle 6 59 9.8 < 0.001 
Grain x Ring 36 125 3.5 < 0.001 

Random error 364 111 0.3  

Total 412 1838   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Angle variation 48 3162 65.9 < 0.001 
Grain angle 6 2969 494.8 < 0.001 
Ring angle 6 51 8.5 < 0.001 
Grain x Ring 36 143 4.0 < 0.001 

Random error 379 209 0.6  

Total 427 3371   

YELLOW-POPLAR 

Source DF Sum of Squares Mean Square P value 

Angle variation 48 1830 38.1 < 0.001 
Grain angle 6 1600 266.8 < 0.001 
Ring angle 6 45 7.5 < 0.001 
Grain x Ring 36 184 5.1 < 0.001 

Random error 356 154 0.4  

Total 404 1982   
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Table B.2 – ANOVA tables for the orthotropic compression strength of Appalachian 
hardwoods (ϕ > 30°) 

ASPEN 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 1774 52.2 < 0.001 
Grain angle 4 1660 415.1 < 0.001 
Ring angle 6 39 6.4 < 0.001 
Grain x Ring 24 75 3.1 < 0.001 

Random error 134 133 0.989  

Total 168 1906   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 7064 207.8 < 0.001 
Grain angle 4 5802 1450.5 < 0.001 
Ring angle 6 675 112.5 < 0.001 
Grain x Ring 24 587 24.5 < 0.001 

Random error 135 259 1.916  

Total 169 7323   

YELLOW-POPLAR 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 4313 126.8 < 0.001 
Grain angle 4 4020 1005.1 < 0.001 
Ring angle 6 104 17.4 < 0.001 
Grain x Ring 24 188 7.8 < 0.001 

Random error 134 107 0.8  

Total 168 4420   
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Table B.3 – ANOVA tables for the orthotropic compression MOE of Appalachian 
hardwoods (ϕ > 30°) 

ASPEN 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 99.0 2.91 < 0.001 
Grain angle 4 75.2 18.81 < 0.001 
Ring angle 6 13.3 2.21 < 0.001 
Grain x Ring 24 10.5 0.44 < 0.001 

Random error 131 11.2 0.09  

Total 165 110.3   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 121.2 3.86 < 0.001 
Grain angle 4 99.6 24.90 < 0.001 
Ring angle 6 17.8 2.97 < 0.001 
Grain x Ring 24 13.8 0.58 < 0.001 

Random error 135 10.5 0.08  

Total 169 141.8   

YELLOW-POPLAR 

Source DF Sum of Squares Mean Square P value 

Angle variation 34 137.5 4.04 < 0.001 
Grain angle 4 129.9 32.47 < 0.001 
Ring angle 6 2.3 0.39 < 0.001 
Grain x Ring 24 5.3 0.22 < 0.001 

Random error 136 7.8 0.06  

Total 170 145.3   
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Table B.4 – ANOVA tables for the orthotropic dynamic MOE of Appalachian 
hardwoods 

ASPEN 

Source DF Sum of Squares Mean Square P value 

Grain angle 6 1.026×1011 1.711×1010 <0.001 
Specimen 19 3.957×108 2.083×107 0.001 
Random error 114 9.236×108 8.102×106  

Total 139 1.030×1011   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Grain angle 6 8.351×1010 1.392×1010 <0.001 
Specimen 22 5.119×108 2.326×107 0.042 
Random error 132 1.846×108 1.399×107  

Total 160 8.586×1010   

YELLOW-POPLAR 

Source DF Sum of Squares Mean Square P value 
Grain angle 6 1.376×1011 2.295×1010 <0.001 
Specimen 20 3.739×108 1.869×107 0.022 
Random error 120 1.212×109 1.010×107  

Total 146 1.393×1011   

 
 
 
Table B.5 – ANOVA table for the LVL bending measurements 

ASPEN 

Source DF Sum of Squares Mean Square E(MS) 

Orientation 1 0.184 0.184 σ2
W + 5 σ2

B + 20 κ2 
Experimental error 6 17.500 2.914 σ2

W + 5 σ2
B 

Sampling error 32 20.273 0.634 σ2
W 

Total 39 37.956   
 

σ2
W = 0.634   ;   456.0

5
634.0914.22 =−=Bσ  
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Table B.6 – ANOVA tables for the orthotropic shear strength of LVL and PSL 
(incomplete design) 

LVL 

Source DF Sum of Squares Mean Square P value 

Grain angle 6 365.8 60.97 <0.001 
Ring angle 6 169.9 28.32 <0.001 
Random error 166 106.8 0.64  

Total 178 865.8   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Grain angle 6 503.8 83.96 <0.001 
Specimen 6 89.3 14.89 <0.001 
Random error 166 167.9 1.01  

Total 178 878.4   

 
 
 
 
 
Table B.7 – ANOVA tables for the orthotropic compression MOE of LVL and PSL 

(incomplete design – log-transformed data) 

LVL 

Source DF Sum of Squares Mean Square P value 

Grain angle 2 11.97 5.986 <0.001 
Ring angle 2 0.15 0.077 <0.001 
Random error 54 0.10 0.002  

Total 58 17.22   

RED OAK 

Source DF Sum of Squares Mean Square P value 

Grain angle 2 12.17 6.086 <0.001 
Specimen 2 0.71 0.355 <0.001 
Random error 54 0.16 0.003  

Total 58 20.08   
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APPENDIX C – SOME GEOMETRIC RELATIONSHIPS 
 

C.1 Relationships between the grain angle of the shear load (ϑϑϑϑ), and the inclination 
of the sheared plane (ΘΘΘΘ) for a compression specimen with certain grain and 
ring angle (ϕϕϕϕ and θθθθ) parameters. 

It can be shown that, using the notations of Figure C.1: 

 ϕθα sin)tan(tan Θ+= . [C.1] 

If the specimen is placed in a three-dimensional cartesian coordinate system 

chosen so that the z-axis is parllel with the longitudinal axis of the specimen, the xz plane 

includes the fiber direction and the lowest corner of the sheared plane corresponds to the 

origin, two vectors can be defined as follows (Figure C.2): 
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The area of the sheared plane can be calculated as the length of the two vectors' 

vectorial product: 
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Figure C.1 – The definition of α. 

Figure C.2 – Vectors X and Y 

Figure C.3 – Shear conditions in the examined plane 



APPENDIX C 167 

 And a normal vector of the sheared plane can be defined as: 

 


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tan
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tan

1
αϕ

n  [C.4] 

At the moment of failure, the vector of the applied force is F (0,0,Fmax). The 

vector  Fe (0,0,1) points in the direction of the applied force. The angle between the load 

direction and the sheared plane (γ  − see Figure C.3) can be calculated as follows: 
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The magnitude of the shear force the particular shear plane experiences will be: 

 T = Fmax cosγ [C.6] 

A direction vector parallel to the shear load can be found by multiplying Fe 

with n twice, vectorially. 
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Finally, the angle (ϑ) between the grain direction ( X ) and the shear load is 
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After full simplification, the above formula reduces to the following: 
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The maximum shear stress in the cross-section can be calculated by dividing the 

shear load by the cross sectional area at the time of failure.  

 

C.2 Derivation of the grain and ring angle (ϕϕϕϕi and θθθθi) of a load with certain load 
and strand orientation (ϕϕϕϕ’ and θθθθ’) acting on a PSL strand with certain strand 
angle and strand deviation (ααααi and ββββi) 

On Figure C.4 vectors B and F are the direction unit vectors of the orieintation 

and the load. By definition, B is in the yz plane, and the anatomical direction vector L is 

in the xy plane. Vector F is general. In the xyz coordinate system, these unit vectors have 

the following coordinates: 

 B( 0 , cosβ i , sinβi ) 

 L( cosα  i , sinα  i , 0 ) 

 F( cosϕ’, sinϕ’cosθ’, sinϕ’sinθ’ ) 
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ϕi and θi are defined as the angle between L and F and the angle between the 

vectors F’ (the projection of F on the RT plane), and T, respectively. The angle ϕi can 

be calculated as follows: 

 'cossin'sincos'coscos θαϕαϕϕ iii LF
LF +=⋅= . [C.11] 

For the calculation of θi the coordinates of the F’ and the T vectors need to be 

calculated. The endpoints of these vectors can be found by perpendicular projection onto 

the RT plane. The normal vector of RT is L, and the plane includes the origin, thus the 

equation of the plane is: 

 0sincos =+ ii yx αα  [C.12] 

The parametric equations of a line that goes through the endpoint of B and is 

parallel with L (i.e. perpendicular to RT) are: 
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Figure C.4 – Definitions of different vectors and angles 
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Substituting these into the equation of RT, we get 
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which yields the following coordinates for T: 

 T ( -cosαi sinαi cosβi , cos2αi cosβi , sinβi). 

A similar line that goes through the endpoint of F is 
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After substitution and simplification this yields the following coordinates for F’: 

 F’ ( sinαi(cosϕ’sinαi-sinϕ’cosαicosθ’) , sinϕ’sinθ’, cosαi(-cosϕ’sinαi+sinϕ’cosαicosθ’) ) 

After full simplification, the cosine of θi is given as: 
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=⋅=

iii

iii
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where ii αϕθαϕ sin'cos'coscos'sin −=Γ . 

Since the length of T is iii ββα 222 sincoscos + , when the length of B is one, 

this is the quantity by which we need to divide the actual strand width to get the projected 

strand width on the yz plane (i.e. on the beam cross-section.)  
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The real strand thickness can be calculated from the projected strand thickness by 

defining the projected strand thickness vector: TP ( 0, tpsinβi , tpsinβi ), where tp is the 

projected thickness. The length of projection of this vector on the RT plane is the real 

thickness. 

The equations of a line that goes through the endpoint of TP and is parallel 

with L are: 
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α

cos
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cos

=
+=

=
 [C.17] 

Substituting the above values into the plane equation yields iiPtt αβ sinsin−= . 

The coordinates of the real thickness vector are, accordingly: 

 To ( -tP sinβi sinαi cosαi , tP sinβi cos2αi  , tP cosβi ) 

the original thickness is calculated as the length of this vector: 

 iiiPo tt βαβ 222 coscossin +=  [C.18] 
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APPENDIX D – CALCULATION OF THE CORRECTION FACTOR FOR THE 

DENSIFICATION EFFECT 
 

The following computation was used to calculate the modification factor for the 

densification effect: 
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where: f – the factor by which the ∆Edyn needs to be divided; 

 ∆Estat, ∆Edyn – the quadratic MOE increase function fitted on the dynamic and 
static MOE increase values, respectively; 

 ∆ρmax, ∆ρmin – the limits of the densification range over which the factor is 
calculated.  

The integration contains the ratio of the static and dynamic MOE increase. This 

ratio, which is a function of ∆ρ, was integrated within the range of typical densification 

values used in the simulation (0% ~ 120%.) Since ∆Edyn is zero at ∆ρ = 0, the ratio is not 

defined at this point, and a limit function was used to approach this value. Furthermore, 

since both ∆Estat and ∆Edyn increase with ∆ρ, the ratio is more important at higher 

densification levels. Therefore, it is weighted with densification. Finally, the calculated 

integral is divided by the length of the integration range, to calculate the weighted 

average ratio. 
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APPENDIX E – PROGRAM DOCUMENTATION 

E.1 Simulation programs 

The following sections introduce the four main simulation routines. The programs are 

fairly flexible in that the layup of LVL as well as the species mix used in PSL  can be specified 

arbitrarily. Species-specific information is stored in the Species  module (see section E.2) 

which can be expanded to include further species. Certain calculations and simulations are 

executed by calling the functions described in section E.3. 

Important notice: the simulation routines as well as some of the functions use external 

functions from the statistical IMSL libraries. The name of these libraries must be specified in the 

project settings. 

 

The  LVLBend program 

Figure E.1 shows the flowchart for the program LVLBend, which simulates the bending 

MOE of LVL. This flowchart, with the code included below clarifies the operation of the 

program almost fully. The array S contains the species layup from the compression to the tension 

side of the beam, coded by integer numbers. The species code is 1 for quaking aspen, 2 for red 

oak and 3 for yellow-poplar. 

 

PROGRAM LVLBend

USE Species
USE Ifaces

CHARACTER (LEN=50) :: FReg,FEflat,FEedge,FThick,Fdens

DOUBLE PRECISION X,W,T,Ifl,Ied,Efl,Eed,MP,A,NN
DOUBLE PRECISION, DIMENSION(3) :: Regpar
DOUBLE PRECISION, DIMENSION(5) :: Stat
DOUBLE PRECISION, DIMENSION(15) :: Tho,Thi,Et,Ec,Itf,Icf,D1,D2,Wei
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START 

Layup specification 

DO simulations

Generate for each layer: 

Original thickness 

Layer thickness 

Layer weight 

EC and ET (including  the 
densification effect) 

INPUT random seed 

DO beams 

Calculate IC and IT for each layer

Calcute and store flatwise and 

edewise MOE, thickness, density

END DO 

END DO 

OUTPUT statistics: 

beam thickness and density, 

flatwise and edgewise MOE, 

regression parameters 

STOP 

Figure E.1 – Flowchart of the program LVLBend 
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(Program LVLBend continued) 

DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: Ee,Ef,Th,Dy

EXTERNAL RNSET,RNNOF,RNUNF

INTEGER Iseed, I, J, N, Q, P, M
INTEGER, DIMENSION(15) :: S

M=20 ! Number of Monte-Carlo Simulations
N=20 ! Number of beams per simulation

! The names of the files to contain regressional info. and statistics for
! edgewise and flatwise MOE, thickness and density of the simulated beams

FReg="C:\simres\LVLbend_Reg.txt"
FEedge="C:\simres\LVLbend_EDGE.txt"
FEflat="C:\simres\LVLbend_FLAT.txt"
FThick="C:\simres\LVLbend_THICK.txt"
FDens="C:\simres\LVLbend_DENS.txt"

W=5 ! Beam width (does not effect simulation results.)

S = (/ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 /) ! The layup

ALLOCATE ( Ee(M,N),Ef(M,N),Th(M,N),Dy(M,N) )

OPEN (UNIT=100,STATUS="OLD",file="c:\My documents\fortran\
&ranstream.txt")

! ranstream.txt contains a streem of random integers between 0 and 10000.

DO Q=1,M ! Executes M number of simulations

WRITE (*,fmt="(I2,T13,\)"),Q

DO J=1,N ! Generates N beams for each simulation

! Reading and initializing the random seed

READ (100,FMT="(E20.15)") A
Iseed=A
CALL RNSET(ISEED)

WRITE (*,fmt="(I3,\)"),J

DO I=1,10 ! This cycle is required because the
NN = Sim("N",A,A) ! first simulated value is biased in
END DO ! the negative tail

! Generating layer properties

DO I=1,15

Tho(I)=Orig(S(I))
Wei(I)=Tho(I)*Dty(S(I))

SELECT CASE (I)
CASE (1,2,14,15)

Thi(I)=Face(Tho(I))
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(Program LVLBend contiunued) 
 

CASE (3:13)
Thi(I)=Core(Tho(I))

END SELECT

Ec(I)= CompHank(0.,0.,S(I)) * DENS( Tho(I),Thi(I),S(I) )
Et(I)= TenMOE(0.,S(I)) * DENS( Tho(I),Thi(I),S(I) )

END DO

! Moment of inertia in flatwise bending

MP=SUM(THI)/2

D1(1) = MP
D2(1) = MP - Thi(1)
ICF(1) = ( D1(1)**3-D2(1)**3 ) / 3 *W
ITF(1) = 0 *W

DO I=2,15

D1(I) = D2(I-1)
D2(I) = D1(I)-Thi(I)

IF ( D1(I)>0 ) THEN

IF ( D2(I)>0 ) THEN
ICF(I) = ( D1(I)**3-D2(I)**3 )/3 *W
ITF(I) = 0 *W

ELSE
ICF(I) = D1(I)**3 / 3 *W
ITF(I) = -D2(I)**3 / 3 *W

END IF

ELSE
ITF(I) = ( D1(I)**3-D2(I)**3 )/3 *W
ICF(I) = 0 *W

END IF

END DO

T=SUM(Thi)

Ifl=W*T**3/12

! Calculating the flatwise and edgewise effective MOE

Efl = SUM(Ec*Icf+Et*Itf) / Ifl
Eed = SUM(Ec*Thi+Et*Thi) / (2*SUM(Thi))

! Storing the flatwise and edgewise MOE, beam thickness and density

Ee(Q,J)=Eed
Ef(Q,J)=Efl
Th(Q,J)=T
Dy(Q,J)=SUM(Wei)/T

END DO ! Ends 'N'

PRINT *,""
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(Program LVLBend continued) 

END DO ! Ends 'NM'

CLOSE (100)

PRINT *,""

! Saving the summary statistics of every simulation run;
! Separate files are created for each property.

OPEN (UNIT=200,STATUS="REPLACE",FILE=FReg)
OPEN (UNIT=201,STATUS="REPLACE",FILE=FEedge)
OPEN (UNIT=202,STATUS="REPLACE",FILE=FEflat)
OPEN (UNIT=203,STATUS="REPLACE",FILE=FThick)
OPEN (UNIT=204,STATUS="REPLACE",FILE=FDens)

DO Q=1,M

Regpar=Reg( Ef(Q,:),Ee(Q,:) )
WRITE (200,FMT="(I3,3(F10.4))"),Q,Regpar(:)

Stat = Sta(Ee(Q,:))
WRITE (201,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Ef(Q,:))
WRITE (202,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Th(Q,:))
WRITE (203,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Dy(Q,:))
WRITE (204,FMT="(I3,5(F12.5))"),Q,Stat(:)

END DO

CLOSE (200)
CLOSE (201)
CLOSE (202)
CLOSE (203)
CLOSE (204)

END PROGRAM LVLBend

 

The  PSLBend program 

Figure E.2 shows the flowchart for the program PSLBend, which simulates the bending 

MOE of PSL. This program is fairly similar to LVLBend, but is somewhat more complex, 

includes more random variables. Most notably, the calculation of the Ii values is more 

complicated, involving numerical integration. Instead of a layup, a species mix is specified. The 

first number in the variable Smix is the proportion of the species denoted by species code 1, the 
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START 

Initialization of  

Species mix 
Distribution parameters 
Cross-sectional dimensions

OUTPUT statistics: 
ΣAi, density, MOE and ΣIi 

flatwise and edgewise,  
regression parameters 

STOP 

END DO 

END DO 

Calculate IC and IT for each strand 

Calcute and store MOE and ΣIi 
flatwise and edewise,  

ΣAi and density 

Generate horizontal and vertical 
strand order

Generate horizontal and vertical 
strand position

DO simulations 

Generate for each strand: 
Strand angle and orientation,
Original and final thickness, 
Projected strand width, 
Species,Weight, 
ET and EC. (including  the 

densification effect) 

INPUT random seed 

DO beams 

Generate number of strands 

ΣAi > A or  

ΣAi < 0.9485A 
True

False 

Figure E.2 – Flowchart of the program PSLBend 
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Table E.1 – The species-specific parameters specified in the Species module 

Name Description 
Am Mean strand angle 
As Standard deviation of strand angle 
Fm Average number of flakes per in2 
Fs Standard deviation of number of flakes per in2 
Om Mean strand deviation 
Os Standard deviation of strand deviation 
Tm Mean final strand thickness (in) 
Ts Standard deviation of final strand thickness (in) 

 

second is that coded 2, etc. (e.g. for a pure yellow-poplar beam, Smix can contain the numbers 

{0, 0, 100}, since the code of yellow-poplar is 3.) 

The parameters of the normal distributions for simulating the geometric parameters of the 

constituents are specified in the variables shown in Table E.1. R is the resolution of the 

numerical integration – increasing it makes the simulation more accurate but longer to run. 

 

Program PSLBend

USE Species
USE Ifaces

CHARACTER (LEN=50) :: FReg,FEflat,FEedge,FIedge,FIflat,FArea,Fdens

DOUBLE PRECISION Fm,Fs,Om,Os,Am,As,Thm,Ths,X,W,T
DOUBLE PRECISION L0,H,L,A,NN,Treal,Theta,Tot,f,fii,the
DOUBLE PRECISION, DIMENSION(2) :: Is
DOUBLE PRECISION, DIMENSION(3) :: Regpar, Smix
DOUBLE PRECISION, DIMENSION(5) :: Stat
DOUBLE PRECISION, DIMENSION(0:250) :: Ori,Ang,Thi,Ver,Wei,Rn,Hor,
& Ice,Ite,Icf,Itf,Eco,Ete,Tho,Lnt
DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: Ee,Ef,Ied,Ifl,Ar,Dy

INTEGER Iseed, I, J, NoS, N, Q, P, M, Temp, R
INTEGER, DIMENSION(0:250) :: Ho,Sps

EXTERNAL RNSET,RNNOF,RNUNF

! The names of the files to contain regressional info. and statistics for
! edgewise and flatwise MOE and moment of inertia,
! combined cross-section and density of the simulated beams
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(Program PSLBend continued) 

FReg="C:\simres\PSLbend_Reg.txt"
FEedge="C:\simres\PSLbend_Eedge.txt"
FEflat="C:\simres\PSLbend_Eflat.txt"
FIedge="C:\simres\PSLbend_Iedge.txt"
FIflat="C:\simres\PSLbend_Iflat.txt"
FArea="C:\simres\PSLbend_Area.txt"
FDens="C:\simres\PSLbend_Dens.txt"

M=20 ! Number of Monte-Carlo Simulations
N=20 ! Number of beams per simulation

Smix=(/0,0,100/)

W=3
H=5.5

Fm=11.64
Fs=0.356

Om=2.991
Os=14.709

Am=0.03
As=4.668

Thm=0.08367
Ths=0.01542

R=10000

ALLOCATE (Ee(M,N),Ef(M,N),Ied(M,N),Ifl(M,N),Ar(M,N),Dy(M,N))

OPEN (UNIT=100,STATUS="OLD",FILE="c:\My documents\fortran\
&ranstream.txt")

! ranstream.txt contains a streem of random integers between 0 and 10000.

DO Q=1,M ! Executes M number of simulations

WRITE (*,fmt="(I2,T13,\)"),Q

DO P=1,N ! Simulates N beams for each simulation

! Reading and initializing the random seed

READ (100,FMT="(E20.15)") A
Iseed=A
CALL RNSET(ISEED)

WRITE (*,fmt="(I3,\)"),P

DO I=1,10 ! This cycle is required because the
NN = W*H*Sim("N",Fm,Fs) ! first simulated value is biased in
END DO ! the negative tail

! Simulation of the strand number
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(Program PSLBend continued) 

1 NN = W*H*Sim("N",Fm,Fs) ! Simulates the number of strands
NoS = INT(NN) ! Integer part (full width strands)
L0 = NN-NoS ! Fractional part (width of strand nr 0.)

! Simulation of strand parameters

DO I=0,NoS

Ori(I) = Sim( "N",Om,Os )
Ang(I) = Sim( "N",Am,As )
Sps(I) = SChoose(Smix)
Lnt(I) = 1/SQRT(COSD(Ang(I))**2*COSD(Ori(I))**2+SIND(Ori(I))**2)
Tho(I) = Orig(Sps(I))`

5 Thi(I) = Sim("N",Thm,Ths)
Wei(I) = Tho(I)*Lnt(I)*Dty(Sps(I))

Treal=THI(I)*SQRT(SIND(Ori(I))**2*COSD(Ang(I))**2+COSD(Ori(I))**2)

IF (Treal>Tho(I)) THEN ! This makes sure that the final thickness is
GO TO 5 ! Smaller than the original.

END IF

Fii=Ang(I)
The=Theta(Ang(I),Ori(I),0.,0.)

Eco(I) = CompHank(Fii,The,Sps(I))*Dens(Tho(I),Treal,Sps(I))
Ete(I) = TenMOE(Fii,Sps(I))*Dens(Tho(I),Treal,Sps(I))

END DO

Lnt(0)=Lnt(0)*L0 ! The length and weight of the first strand
Wei(0)=Wei(0)*L0 ! Is decreased according to L0

Tot=SUM(Thi(0:NoS)*Lnt(0:NoS)) ! The combined strand cross-section

! Beam rejections based on the combined cross-section

IF (Tot>H*W) THEN
GO TO 1

ELSE IF (Tot<0.95*H*W) THEN
GO TO 1

END IF

! Simulation of the horizontal order (vertical order is unchanged)

DO I=0,NoS
Rn(I)=RNUNF()

END DO

DO J=0,NoS
X=1
DO I=0,NoS

IF (Rn(I)<X) THEN
Temp=I
X=Rn(I)

END IF
END DO
Rn(Temp)=1.5
HO(J)=Temp

END DO
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(Program PSLBend continued) 

! Simulation of the horizontal and vertical position

Ver(0) = (Thi(0)*Lnt(0)/Tot)*H/2-H/2
Hor(HO(0)) = (Thi(HO(0)*Lnt(HO(0)))/Tot)*W/2-W/2

DO I=1,NoS
Ver(I) = Ver(I-1) + (Thi(I)*Lnt(I)/Tot)*H
Hor(HO(I)) = Hor(HO(I-1)) + (Thi(HO(I))*Lnt(HO(I))/Tot)*W

END DO

! Calculation of moment of inertia values horizontally and vertically

DO I=0,NoS

Is = Numint(Ori(I),Ver(I),Thi(I),Lnt(I),H,R)
Ice(I) = Is(1)
Ite(I) = Is(2)

Is = Numint(Ori(I)-90,Hor(I),Thi(I),Lnt(I),W,R)
Icf(I) = Is(1)
Itf(I) = Is(2)

END DO

! Calculating and storing flatwise and edgewise MOE and combined
! moment of inertia,the combined cross-section of the strands
! and beam density

Ee(Q,P)=SUM(Ice(0:NoS)*Eco(0:NoS)+Ite(0:NoS)*Ete(0:NoS))/(H**3*W/12)
Ef(Q,P)=SUM(Icf(0:NoS)*Eco(0:NoS)+Itf(0:NoS)*Ete(0:NoS))/(H*W**3/12)
Ied(Q,P)=SUM(Ice(0:NoS)+Ite(0:NoS))
Ifl(Q,P)=SUM(Icf(0:NoS)+Itf(0:NoS))
Ar(Q,P)=Tot
Dy(Q,P)=SUM(Wei(0:NoS))/(W*H)

END DO ! Ends 'N'

print *,""

END DO ! Ends 'M'

CLOSE (100)

print *,""

! Saving the summary statistics of every simulation run;
! Separate files are created for each property.

OPEN (UNIT=200,STATUS="REPLACE",FILE=FReg)
OPEN (UNIT=201,STATUS="REPLACE",FILE=FEedge)
OPEN (UNIT=202,STATUS="REPLACE",FILE=FEflat)
OPEN (UNIT=203,STATUS="REPLACE",FILE=FIedge)
OPEN (UNIT=204,STATUS="REPLACE",FILE=FIflat)
OPEN (UNIT=205,STATUS="REPLACE",FILE=FArea)
OPEN (UNIT=206,STATUS="REPLACE",FILE=FDens)
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(Program PSLBend continued) 

DO Q=1,M

Regpar=Reg( Ef(Q,:),Ee(Q,:) )
WRITE (200,FMT="(I3,3(F10.4))"),Q,Regpar(:)

Stat = Sta(Ee(Q,:))
WRITE (201,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Ef(Q,:))
WRITE (202,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Ied(Q,:))
WRITE (203,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Ifl(Q,:))
WRITE (204,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Ar(Q,:))
WRITE (205,FMT="(I3,5(F12.8))"),Q,Stat(:)

Stat = Sta(Dy(Q,:))
WRITE (206,FMT="(I3,5(F12.5))"),Q,Stat(:)

END DO

CLOSE (200)
CLOSE (201)
CLOSE (202)
CLOSE (203)
CLOSE (204)

end program PSLBend

 

The LVLComp program 

Figure E.3 shows the flowchart for the program LVLComp, which simulates the 

orthotropic compression MOE of LVL in a certain direction. The program is similar to, though 

simpler than LVLBend. The variables Fip and Thp contain the ϕ’ and θ’ values associated with 

the compression load, respectively. The program outputs only the statistics for the simulated 

compression MOE. 

 

Program LVLComp

USE Species
USE Ifaces

CHARACTER (LEN=50) :: FEcomp

DOUBLE PRECISION X,T,A,Fip,Thp
DOUBLE PRECISION, DIMENSION(5) :: Stat
DOUBLE PRECISION, DIMENSION(15) :: Tho,Thi,Moe
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DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: E

EXTERNAL RNSET,RNNOF,RNUNF

INTEGER Iseed, I, J, N, Q, P, M, NN
INTEGER, DIMENSION(15) :: S

M=20 ! Number of Monte Carlo Simulations
N=10 ! Number of specimens per simulation

! The name of the files to contain regressional MOE statistics

FEcomp="C:\simres\LVLcomp_G90_R0.txt"

Fip=90
Thp=0

S = (/ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 /) ! The layup

ALLOCATE ( E(M,N) )

OPEN (UNIT=100,STATUS="OLD",file="c:\My documents\fortran\
&ranstream.txt")

DO Q=1,M ! Executes M number of simulations

WRITE (*,fmt="(I2,T13,\)"),Q

DO J=1,N ! Generates N specimens for each simulation

! Reading and initializing the random seed

READ (100,FMT="(E20.15)") A
Iseed=A
CALL RNSET(Iseed)

WRITE (*,fmt="(I3,\)"),J

DO I=1,10 ! This cycle is required because the
NN = Sim("N",A,A) ! first simulated value is biased in
END DO ! the negative tail

! Generating layer properties

DO I=1,15

Tho(I)=Orig(S(I))

SELECT CASE (I)
CASE (1,2,14,15)

Thi(I)=Face(Tho(I))
CASE (3:13)

Thi(I)=Core(Tho(I))
END SELECT

Moe(I)=CompHank(Fip,Thp,S(I))*Dens(Tho(I),Thi(I),S(I))

END DO
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START 

Calcute and store the beam’s 

compression MOE 

END DO 

END DO 

OUTPUT  

compression MOE statistics 

STOP 

DO simulations

Generate for each layer: 

Original thickness 

Layer thickness 

Eϕ’θ’ (including  the 
densification effect) 

INPUT random seed 

DO beams 

Specification of the  

layup, ϕ’ and θ’ 

Figure E.3 – Flowchart of the program LVLComp 
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(Program LVLComp continued) 

! Calculating beam thickness and compression MOE

T=SUM(THI)

E(Q,J)=SUM(MOE*THI)/T

END DO ! Ends 'N'

print *,""

END DO ! Ends 'NM'

CLOSE (100)

print *,""

(Program LVLComp continued) 

OPEN (UNIT=200,STATUS="REPLACE",FILE=FEcomp)

DO Q=1,M

Stat = Sta(E(Q,:))
WRITE (200,FMT="(I3,5(F12.8))"),Q,Stat(:)

END DO

CLOSE (200)

end program LVLComp

 

The PSLComp program 

Figure E.4 shows the flowchart for the program PSLComp, which simulates the 

orthotropic compression MOE of PSL in a given direction. See some remarks at PSLbend and 

LVLComp. 

 

Program PSLComp

USE Species
USE Ifaces

CHARACTER (LEN=50) :: FEcomp

DOUBLE PRECISION Fm,Fs,Om,Os,Am,As,Thm,Ths,X,W,T,CG,NN
DOUBLE PRECISION L0,H,A,Treal,Theta,Tot,Fii,The,Fip,Thp,f
DOUBLE PRECISION, DIMENSION(3) :: Smix
DOUBLE PRECISION, DIMENSION(5) :: Stat
DOUBLE PRECISION, DIMENSION(0:250) :: Ori,Ang,Thi,Moe,Tho,Lnt
DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: E
INTEGER, DIMENSION(0:250) :: Sps
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START 

Calcute and store the beam’s 

compression MOE 

OUTPUT  

beam MOE statistics 

STOP 

END DO 

END DO 

INPUT random seed 

DO beams 

DO simulations

Initialization of  

Species mix 
Distribution parameters 
Cross-sectional dimensions

Generate for each strand: 
Strand angle and orientation,
Original and final thickness, 
Projected strand width, 
Species, 
Eϕ’θ’ (including  the 

densification effect) 

Generate number of strands 

ΣAi > A or  

ΣAi < 0.9485A 

True

False

Figure E.4 – Flowchart of the program PSLComp 



 

APPENDIX E 188

(Program PSLComp continued) 

EXTERNAL RNSET,RNNOF,RNUNF

INTEGER Iseed, I, J, NoS, N, Q, P, M

M=20 ! Number of Monte Carlo Simulations
N=10 ! Number of specimens per simulation

! The name of the file to contain compression MOE statistics
! edgewise and flatwise MOE, thickness and density of the simulates beams

FEcomp="C:\simres\PSLcomp_G90_R0.txt"

Fip=90
Thp=0

W=1
H=4

Smix=(/0,0,100/)

Fm=11.64
Fs=0.356

Om=2.991
Os=14.709

Am=0.03
As=4.668

Thm=0.08367
Ths=0.01542

ALLOCATE ( E(M,N) )

OPEN (UNIT=100,STATUS="OLD",file="c:\My documents\fortran\
&ranstream.txt")

! ranstream.txt contains a streem of random integers between 0 and 10000.

DO Q=1,M ! Executes M number of simulations

WRITE (*,fmt="(I2,T13,\)"),Q

DO J=1,N ! Simulates N specimens for each simulation

! Reading and initializing the random seed

READ (100,FMT="(E20.15)") A
Iseed=A
CALL RNSET(Iseed)

WRITE (*,fmt="(I3,\)"),J

DO I=1,10 ! This cycle is required because the
NN = W*H*Sim("N",Fm,Fs) ! first simulated value is biased in
END DO ! the negative tail
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(Program PSLComp continued) 

! Simulation of the strand number

1 NN = W*H*Sim("N",Fm,Fs) ! Simulates the number of strands
NoS = INT(NN) ! Integer part (full width strands)
L0 = NN-NoS ! Fractional part (width of strand nr 0.)

! Simulation of strand parameters

DO I=0,NoS

Ori(I) = Sim( "N",Om,Os )
Ang(I) = Sim( "N",Am,As )
Sps(I) = SChoose(SMIX)
THO(I) = Orig(Sps(I))
Lnt(I) = 1/SQRT(COSD(Ang(I))**2*COSD(Ori(I))**2+SIND(Ori(I))**2)
Tho(I) = Orig(Sps(I))

5 Thi(I) = Sim("N",Thm,Ths)

Treal=THI(I)*SQRT(SIND(Ori(I))**2*COSD(Ang(I))**2+COSD(Ori(I))**2)

IF (Treal>Tho(I)) THEN ! This makes sure that the final thickness is
GO TO 5 ! Smaller than the original.

END IF

Fii=Fi(Ang(I),Ori(I),Fip,Thp)
The=Theta(Ang(I),Ori(I),Fip,Thp)

MOE(I)=CompHank(Fii,The,Sps(I))*Dens(Tho(I),Treal,Sps(I))

END DO

Lnt(0)=Lnt(0)*L0

! Specimen rejections based on the combined cross-section

If (SUM(Thi(0:NoS)*Lnt(0:NoS))/(W*H)>1) THEN
go to 1

Else If (SUM(Thi(0:NoS)*Lnt(0:NoS))/(W*H)<0.95) THEN
go to 1

End If

! Calculating and storing the compression MOE of the specimen

E(Q,J)=( SUM(Moe(0:NoS)*Thi(0:NoS)*Lnt(0:NoS)) )/(W*H)

END DO ! Ends 'N'

PRINT *,""

END DO ! Ends 'NM'

CLOSE (100)

PRINT *,""

! Saving the summary statistics of every simulation run;
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(Program PSLComp continued) 

OPEN (UNIT=200,STATUS="REPLACE",FILE=FEcomp)

DO Q=1,M

STAT = Sta(E(Q,:))
WRITE (200,FMT="(I3,5(F12.8))"),Q,STAT(:)

END DO

CLOSE (200)

end program PSLComp

E.2 Modules 

 

The Species module 

The Species module contains species-specific information concerning the mechanical, 

physiscal and geometric properties, and the densification curves of the different species. The 

information is organized into subroutines, which are called by another subroutine (Spp), which, 

in turn, is called by the individual functions that need to access species-specific information. The 

Spp subroutine can be called from any subroutine which uses the Species module, and has 

only one argument; species code.  

The Species module can be expanded to include further species. In this case, further 

subroutines should be added that initialize the same variables as the subroutines Aspen, Oak 

and Yelpop. Table E.2 shows the interpretation of each variable. If new species are added, the 

case construct in the subroutine Spp should include new cases with new species codes, which 

call the appropriate subroutines.  
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Table E.2 – The species-specific parameters specified in the Species module 

Name Description 
b1 Linear coefficient of the densification curve 
b2 Quadratic coefficient of the densification curve 
cLLm Mean compression MOE in the longitudinal direction  
cLLs STD of compression MOE in the longitudinal direction  
cLRm Mean compression MOE at ϕ = 45° ; θ = 90°  
cLRs STD of compression MOE at ϕ = 45° ; θ = 90°  
cLTm Mean compression MOE at ϕ = 45° ; θ = 0°  
cLTs STD of compression MOE at ϕ = 45° ; θ = 0°  
cRRm Mean compression MOE in the radial direction  
cRRs STD of compression MOE in the radial direction  
cRTm Mean compression MOE at ϕ = 90° ; θ = 45° 
cRTs STD of compression MOE at ϕ = 90° ; θ = 45°  
cTTm Mean compression MOE in the tangential direction  
cTTs STD of compression MOE in the tangential direction  
dLLm Mean dynamic MOE in the longitudinal direction  
dLLs STD of dynamic MOE in the longitudinal direction  
dLTm Mean dynamic MOE in the longitudinal direction  
dLTs STD of dynamic MOE in the longitudinal direction  
Dm Average veneer density 
Ds STD of veneer density 
dTTm Mean dynamic MOE in the tangential direction  
dTTs STD of dynamic MOE in the tangential direction  
Td* Original veneer distribution function ; type 
Tm Original veneer distribution function ; location parameter 
Ts Original veneer distribution function ; scale parameter 
Tsh1 Original veneer distribution function ; shape parameter 1 
Tsh2 Original veneer distribution function ; shape parameter 2 
x2
x3
x4

Coefficients of x2, x3, and x4 when calculating the variance at a given 
densification level in the densification curve (see discussion at function 
Dens.) 

Vdens Variance of the ∆E values calculated around the densification curve 
*Type Character. All other values are type Double Precision. 
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Module Species

Character (LEN=3) :: Td
Double Precision :: cLLm,cRRm,cTTm,cLRm,cLTm,cRTm, Dm, Ds
Double Precision :: cLLs,cRRs,cTTs,cLRs,cLTs,cRTs
Double Precision :: dLLm,dTTm,dLTm,dLLs,dTTs,dLTs
Double Precision :: b1,b2,x2,x3,x4,Vdens,Tm,Ts,Tsh1,Tsh2

contains

subroutine Spp(s)

integer :: s

select case (s)
case (1)

call Aspen
case (2)

call Oak
case (3)

call Yelpop
end select

end subroutine Spp

subroutine Aspen

cLLm=10.74
cRRm=0.82
cTTm=0.26
cLTm=0.72
cLRm=2.10
cRTm=0.36
cLLs=1.71
cRRs=0.26
cTTs=0.03
cLRs=0.46
cLTs=0.10
cRTs=0.03

dLLm = 11.976
dTTm = 1.279
dLTm = 1.030
dLLs = 0.888
dTTs = 0.135
dLTs = 0.047

b1 = 1.606
b2 = -0.007904
x2=5.49171e-5
x3=-1.86404e-6
x4=1.68974e-8

Vdens=111.39
Td="EVA"
Tm=3.108/25.4
Ts=0.069/25.4
Tsh1=0.
Tsh2=0.

Dm=417.61
Ds=16.4

end subroutine Aspen

subroutine Oak
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(Module Species continued) 

cLLm=14.40
cRRm=1.61
cTTm=1.04
cLTm=2.42
cLRm=2.41
cRTm=0.92
cLLs=2.16
cRRs=0.29
cTTs=0.14
cLRs=0.29
cLTs=0.20
cRTs=0.06

dLLm = 10.651
dTTm = 1.396
dLTm = 1.382
dLLs = 1.201
dTTs = 0.046
dLTs = 0.044

b1 = 1.401
b2 = -0.003451
x2=7.65145e-5
x3=-2.93889e-6
x4=2.99454e-8

Vdens=67.89
Td="L"
Tm=3.046/25.4
Ts=0.048/25.4
Tsh1=0.
Tsh2=0.

Dm=552.41
Ds=14.4

end subroutine Oak

subroutine Yelpop

cLLm=10.26
cRRm=0.74
cTTm=0.37
cLTm=1.46
cLRm=1.18
cRTm=0.40
cLLs=1.47
cRRs=0.11
cTTs=0.04
cLRs=0.35
cLTs=0.11
cRTs=0.02

dLLm = 13.529
dTTm = 1.254
dLTm = 1.142
dLLs = 1.020
dTTs = 0.112
dLTs = 0.062

b1 = 1.463
b2 = -0.004172
x2=5.91558e-5
x3=-1.91994e-6
x4=1.67612e-8
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(Module Species continued) 

Vdens=83.93
Td="W"
Tm=0
Ts=3.162/25.4
Tsh1=42.761
Tsh2=0.

Dm=469.16
Ds=23.74

end subroutine Yelpop

end module Species

 

 

The Ifaces module 

The Ifaces module contains interfaces to the functions that require one. It should be 

used by all programs and functions that call such functions. Since this module is easily 

reproducible from the declaration part of these functions, source code is not given for this 

module. 

 

E.3 Functions 

The following functions are called by some or all of the simulation routines and, 

sometimes, by other functions. The arguments of the functions are double precision floating 

numbers, unless otherwise noted. An exception is the species code argument, which must be an 

integer number. Function results are double precision numbers or arrays. Angles are always in 

degrees. 
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The CompHank and CompOrt functions 

Syntax:  CompHank( grain angle , ring angle , species code )

CompOrt( grain angle , ring angle , species code )

Description:  The CompHank and CompOrt functions simulate the compression MOE of 

wood at given grain and ring angle levels, according to the three-dimensional 

Hankinson formula and the orthotropic tensor theory, respectively. First, the 

functions call the SPP subroutine that initializes the parameters of the species 

according to the species code argument. Following this, they simulate the input 

parameters (MOE values) for the equation. Finally, they calculate the MOE value 

from the simulated parameters and the ring angle and grain angle arguments. 

This MOE is returned as a result, unless it is less than 0.05, in which case the 

result is set to 0.05 GPa. 

 
DOUBLE PRECISION FUNCTION CompHank(a,r,s) RESULT (RES)

USE Species
USE Ifaces

DOUBLE PRECISION LL,RR,TT,TR,g,r,a
INTEGER s

CALL Spp(s)

g=ABS(a)

LL = Sim("N",cLLm,cLLs)
RR = Sim("N",cRRm,cRRs)
TT = Sim("N",cTTm,cTTs)

TR=(r*(RR-TT)/90+TT)+(0.2*(-SIND(2*r)*(RR+TT)/2) )

RES=LL*TR/(LL*SIND(g)**2+TR*COSD(g)**2)

IF (RES<0.05) THEN
RES=0.05

END IF

END FUNCTION CompHank



 

APPENDIX E 196

DOUBLE PRECISION FUNCTION COMPORT(A,R,S) RESULT (RES)

USE SPECIES
USE IFACES

DOUBLE PRECISION :: LL,RR,TT,LR,LT,RT,G,R,A
INTEGER S

CALL SPP(S)

G=ABS(A)

LL = SIM("N",CLLM,CLLS)
RR = SIM("N",CRRM,CRRS)
TT = SIM("N",CTTM,CTTS)
LR = SIM("N",CLRM,CLRS)
LT = SIM("N",CLTM,CLTS)
RT = SIM("N",CRTM,CRTS)

RES=1/(
& 1/LL*COSD(G)**4 +
& 1/RR*SIND(G)**4*SIND(R)**4 +
& 1/TT*SIND(G)**4*COSD(R)**4 +
& (4/RT - 1/RR - 1/TT)*SIND(G)**4*SIND(R)**2*COSD(R)**2 +
& (4/LT - 1/LL - 1/TT)*COSD(G)**2*SIND(G)**2*COSD(R)**2 +
& (4/LR - 1/LL - 1/RR)*COSD(G)**2*SIND(G)**2*SIND(R)**2 )

IF (RES<0.05) THEN
RES=0.05

END IF

END FUNCTION COMPORT

 

The Core function 

Syntax:  Core( original thickness )

Description:  The Core function simulates the core layer thickness in LVL If the simulated 

thickness is less than 0.07in, it is set to this value, and if it is higher than the 

original thickness, it is re-simulated. 
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FUNCTION Core(THO) RESULT (RES)
USE Ifaces

DOUBLE PRECISION :: Cm,Cs,RES,THO

Cm=0.11594
Cs=0.003385

5 RES = Sim("L",Cm,Cs)

IF ( RES<0.07 ) THEN
RES=0.07

ELSE IF ( RES>THO) THEN
GO TO 5

END IF

END FUNCTION Core

 

The Dens function 

Syntax:  Dens( original thickness , final thickness , species )

Description:  The Dens function simulates a factor by which to multiply the generated MOE 

values to account for their increase due to the densification sustained by the 

constituent during pressing. The function first calls the SPP subroutine to 

initialize the parameters for the specified species, then calculates the percent 

densification from the arguments original thickness and final thickness. Following 

this, it calculates the value of the second order densification function (Figure 

6.14), and the standard deviation at the given densification level. (The latter 

calculation is explained following the code.) Finally, it simulates the MOE 

increase, using the function value and the standard deviation as the location and 

scale parameters in a normal distribution. This number is divided by 1.24 (see 

section 6.2.2.) The calculated factor is limited in the range of 0.7 to 2.5. If the 

final thickness is larger than the original one (i.e. negative densification), the 

function does not detect the error, but the returned densification value will be 

meaningless. 
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DOUBLE PRECISION FUNCTION DENS(T0,T1,S) RESULT (RES)

USE SPECIES
USE IFACES

DOUBLE PRECISION D,EI,T0,T1,F,STD
INTEGER S

CALL SPP(S)

F=1.24

D=(T0-T1)/T1*100

EI=(B1*D+B2*D**2)
STD=SQRT( (1 + X2*D**2 + X3*D**3 + X4*D**4) * VDENS )

RES=1 + SIM("N",EI,STD)/100/F

IF (RES<0.7) THEN
RES=0.7

END IF

IF (RES>2.5) THEN
RES=2.5

END IF

END FUNCTION DENS
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CALCULATING THE VARIANCE OF THE DATA AT A POINT  
FOR SECOND-ORDER POLYNOMIAL REGRESSION 

 
 
Polynomial regression can be treated as a multiple linear regression model. E.g. for a 
second order line, the following model applies: 
 
Yi = β0 + β1X1i + β2X2i + εi,  
 
where X1i = xi and X2i = xi

2 and εi ~ NID(o,σ2) The following calculation provides the 
variance at a given value of x: 
 
V = (1 + [X0][X’X]-1[X0]’)σ2, 
 
where X0 is the vector [1,x,x2], and  [X’X]-1 is the inverse of the following matrix: 
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where xi are the x values belonging to the individual measurements, and n is the total 
number of measurements. 
 
In case of a regression line that passes through the origin (b0=0), the first row and 
column of the matrix, as well as the first element of X0, are eliminated. 
 
 

 

The Dty function 

Syntax:  Dty( species )

Description:  The Dty function simulates the original density of a layer or a strand. First, it 

calls the SPP subroutine to initialize the parameters for the given species, than it 

simulates the species-specific density using these parameters. This function 

contains no safety limits on the simulated density, since its value is not crucial for 

the simulation of the mechanical properties. 
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FUNCTION Dty(s) RESULT (RES)

USE Species
USE Ifaces

INTEGER s

CALL Spp(s)

RES= Sim("N",Dm,Ds)

END FUNCTION Dty

The Face function 

Syntax:  Face( original thickness )

Description:  The Face function simulates the face layer thickness in LVL If the simulated 

thickness is less than 0.07in, it is set to this value, and if it is higher than the 

original thickness, it is re-simulated. 

 

FUNCTION Face(THO) RESULT (RES)

USE Ifaces

DOUBLE PRECISION :: Fm,Fs,RES,THO

Fm=0.10864
Fs=0.00558

5 RES = Sim("N",Fm,Fs)

IF ( RES<0.07 ) THEN
RES=0.07

ELSE IF ( RES>THO) THEN
GO TO 5

END IF

END FUNCTION Face



 

APPENDIX E 201

The Fi function 

Syntax:  Fi( α , β , ϕ’ , θ’ )

Description:  The Fi function calculates the grain and ring angle between a given strand and 

the load applied on PSL. The first two arguments are the angle and deviation of 

the given strand (see section 5.4.3), while the second two are the load and strand 

orientation of the applied load. Note that in bending, ϕ’ = 0°, and that β is not 

required for the calculation. This parameter is only included here for the sake of 

consistency with the function Theta. For the derivation of this calculation, see 

APPENDIX C. 

 

FUNCTION Fi(alf,bet,fip,thp) RESULT (res)

DOUBLE PRECISION :: res,alf,bet,fip,thp,gam

res=ACOSD(COSD(alf)*COSD(fip)+COSD(thp)*SIND(alf)*SIND(fip))

END FUNCTION Fi

 

The Numint function 

Syntax:  Numint( orientation , position , thickness , length , height , resolution )

Description:  The Numint function uses numerical integration to calculate IT and IC for a 

single strand cross-section in PSL. The arguments are the following: 

orientation – the cross-sectional orientation of the strand, relative to the neutral 
axis; 

position  – the position of the strand in the loading direction; 
thickness  – projected strand thickness;  
length  – projected length of the strand in the cross-section; 
height  – the cross-sectional dimension of the beam in the loading direction; 
resolution – the resolution of the numerical integration. 

The function first defines a number of parameters; Figure E.5 aids the 

understanding of their meaning. After this, the function divides the strand cross-

section into resolution number of segments, also shown on Figure E.5. The 

segments are treated as rectangles, and their 2nd order moment of inertia is 



 

APPENDIX E 202

calculated respective to the neutral axis of the beam cross-section. Depending on 

whether the midpoints of the intervals are in the tension or compression region, 

their moment of inertia is added to ITi or ICi, respectively. If the segment is outside 

of the beam cross-section, the function repositions it according to the torus 

convention. After the moment of inertia for all of the segments have been 

calculated and added to the appropriate I value, the function returns an array 

containing ITi and ICi in this order. 

 

FUNCTION Numint(Ori,D,T,L,H,R) Result (Is)

DOUBLE PRECISION :: Ori,D,T,L,H,ALF,BET,HDG,UC,LC,TH,TB,ICO,ITE
DOUBLE PRECISION :: IL,IM,IW,SMI,A,J
DOUBLE PRECISION, DIMENSION(2) :: Is
INTEGER R

ALF=ABS( 90-ABS(90-Ori) )
BET=ATAND(T/L)
HDG=SQRT(T**2+L**2)/2
UC=HDG*SIND(ALF+BET)
LC=ABS(HDG*SIND(ALF-BET))
TH=T*COSD(ALF)
TB=T/SIND(ALF)

IF (BET>ALF) THEN
TB=L/COSD(ALF)
TH=L*SIND(ALF)

END IF

ICO=0
ITE=0
IL = 2*UC/R

DO J = (D-UC) , (D+UC-IL) , IL

IM = J+IL/2

IF ( IM < (D-LC) ) THEN
IW = ( (D-LC)-IM )/TH * TB

ELSE IF ( IM < (D+LC) ) THEN
IW = TB

ELSE
IW = ( IM-(D+LC) )/TH * TB

END IF

SMI = IW*IL**3/12
A = IW*IL

IF ( IM<-H/2 ) THEN
ICO = ICO+SMI+A*(H+IM)**2

ELSE IF ( IM<0 ) THEN
ITE = ITE+SMI+A*IM**2

ELSE IF ( IM<H/2 ) THEN
ICO = ICO+SMI+A*IM**2

ELSE
ITE = ITE+SMI+A*(H-IM)**2

END IF

END DO
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Figure E.5 – Variables used in the function Numint

a. – When ALF>BET 
b. – When ALF<BET 
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(Function Numint continued) 

Is(1)=ICO
Is(2)=ITE

END FUNCTION Numint

 

The Orig function 

Syntax:  Orig( species )

Description:  The Orig function simulates the original layer or strand thickness for a 

constituent. First, it calls the SPP subroutine to initialize the parameters for the 

given species, than it simulates the species-specific original thickness, using these 

parameters. If the minimum specified thickness is 0.11 in, because, below this 

value it gets hard to simulate LVL core layer thickness values, which must be 

smaller than the original thickness value. 

 

FUNCTION Orig(s) RESULT (RES)
USE Species
USE Ifaces

DOUBLE PRECISION :: RES
INTEGER :: s

CALL Spp(s)

Res=Sim(Td,Tm,Ts,Tsh1,Tsh2)

IF ( RES<0.11 ) THEN
RES=0.11

END IF

END FUNCTION Orig

 

The Reg function 

Syntax:  Reg( x values , y values )

Description:  The Reg function takes a two one-dimensional, arbitrary sized arrays as its 

arguments. The corresponding values in the two arrays are treated as data pairs. 

The function returns an array of three values, containing the linear regression 

parameters b0 (y-intercept), b1 (slope), and r2, in this order. 
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Warnings: Requires interface! 

The size of the two arrays must be the same. 

 
FUNCTION Reg(x,y) RESULT (res)

DOUBLE PRECISION, DIMENSION (:) :: x,y
DOUBLE PRECISION, DIMENSION (3) :: res
DOUBLE PRECISION :: Sx, Sy, Sxy, Sxs
INTEGER n,nx,ny

nx=SIZE(x)
ny=SIZE(y)

IF (nx==ny) THEN

n=SIZE(x)
Sx=SUM(x)
Sy=SUM(y)
Sxy=SUM(x*y)
Sxs=SUM(x**2)
Sys=SUM(y**2)

res(2)=(Sxy-Sx*Sy/n) / (Sxs-Sx**2/n)

res(1)=Sy/n-res(2)*Sx/n

res(3)=(Sxy-Sx*Sy/n)**2 / ( (Sxs-Sx**2/n) * (Sys-Sy**2/n) )

END IF

END FUNCTION Reg

 

The SChoose function 

Syntax:  SChoose( species mix )

Description:  The purpose of the SChoose function is to randomly generate a PSL strand from 

a given species mix. The argument species mix is a one-dimensional array that 

contains the proportions of the species coded 1 to n, where n is the total number 

of species. Note that the array can be any size, so that the mix may contain any 

number of species (this feature is useful if the raw data base is to be expanded by 

adding new species in the module Species.) The proportions do not have to add 

up to any particular value (e.g. 1 or 100) 

Warning: Requires interface 
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FUNCTION SChoose(Smix) RESULT (Res)

DOUBLE PRECISION :: Z,V
DOUBLE PRECISION, DIMENSION (:) :: Smix

INTEGER :: Res, n, a

n=size(Smix)

Z=RNUNF()
V=0

DO a=1,n

V=V+Smix(a)/SUM(Smix)
IF (Z<V) THEN

Res=a
EXIT

END IF

END DO

END FUNCTION SChoose

 

The Sim function 

Syntax:  Sim( distribution , location , scale , shape1 , shape2 )

Description:  The Sim function simulates a random number from a given statistical 

distribution, specified in the distribution argument. This is a character type 

argument which can assume the following values: 

N  – normal distribution; 
U – uniform distribution; 
L  – logistic distribution; 
W – Weibull distribution; 
JSU  – Johnson SU distribution; 
EVA – extreme value, type A distribution; 
EVB  – extreme value, type B distribution; 

The location and scale arguments are mandatory, while shape1 and shape2 are 

optional, since they are not necessary in every distribution function. 

The source code is self-explanatory. 

 

Warning: Requires interface! 
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FUNCTION SIM(Dist,Loc,Sc,Sh1,Sh2) RESULT (RES)

CHARACTER (len=*) :: Dist

DOUBLE PRECISION :: Loc,Sc,Z,RES
DOUBLE PRECISION, OPTIONAL :: Sh1,Sh2

SELECT CASE (Dist)

CASE ("N")
RES= Loc + RNNOF()*Sc

CASE ("U")
RES= Loc + RNUNF()*(Sc-Loc)

CASE ("L")
Z=RNUNF()
RES=Sc*LOG(EXP(Loc/Sc)*Z/(1-Z))

CASE ("JSU")
Z=RNNOF()
RES= 0.5*Sc*( EXP( (Z-Sh1)/Sh2 ) -

& EXP( (Sh1-Z)/Sh2 ) ) + Loc

CASE ("W")
RES= Loc + Sc* (-LOG(RNUNF()))**(1/Sh1)

CASE ("EVA")
Z=RNUNF()
RES= Loc+Sc*LOG(-LOG(Z))

CASE ("EVB")
Z=RNUNF()
RES= Loc-Sc*LOG(-LOG(Z))

END SELECT

END FUNCTION Sim

 

The Sta function 

Syntax:  Sta( array )

Description:  The Sta function takes a one-dimensional, arbitrary sized array as its argument, 

and returns an array of five values, containing the mean, standard deviation, 

minimum, maximum and skewness of the data contained in array, in this order. 

Warning: Requires interface! 
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FUNCTION Sta(arry) RESULT (res)

DOUBLE PRECISION :: mi,ma
DOUBLE PRECISION, DIMENSION (:) :: arry
DOUBLE PRECISION, DIMENSION (5) :: res
Integer :: n,i

n=SIZE(arry)

res(1)=SUM(arry)/n
res(2)=SQRT( SUM( (arry-res(1))**2 )/(n-1) )

mi=arry(1)
ma=arry(1)

DO I=2,N
IF (mi>arry(i)) THEN

mi=arry(i)
END IF

IF (ma<arry(i)) THEN
ma=arry(i)

END IF
END DO

res(3)=mi
res(4)=ma
res(5)=SUM( (arry-res(1))**3 )/n /res(2)**3

END FUNCTION Sta

 

The TenMOE function 

Syntax:  TenMOE( grain angle , species code )

Description:  The TenMOE function simulates the tensile MOE of different wood species at a 

given grain angle level, using the combination of the orthotropic theory and 

Hankinson’s formula. First, the function calls the SPP subroutine that initializes 

the parameters of the species according to the species code argument. Following 

this, it simulates the input parameters (dynamic MOE values) for the model. After 

this, the dynamic MOE value is calculated using both the orthotropic equation and 

Hankinson’s formula, and the two values are combined using Equation 6.3.  

The simulated dynamic MOE is converted to tensile MOE. For this, the program 

calculates the static MOE belonging to the simulated dynamic MOE, according to 

the second order relationship shown on Figure 6.13 b, and calculates the standard 

deviation at the given dynamic MOE level. (For a discussion of this calculation, 
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see the Dens function) Finally, the function simulates the static MOE from the 

calculated mean static MOE and the standard deviation. This value is returned as 

a result, unless it is less than 0.05, in which case the result is set to 0.05 GPa. 

 

FUNCTION TenMOE(g,s) RESULT (RES)

USE Species
USE Ifaces

INTEGER s
DOUBLE PRECISION :: G,RES,L,T,LT,ORT,HANK,DYN,Sdev,Stat

CALL Spp(s)

L = Sim("N",dLLm,dLLs)
T = Sim("N",dTTm,dTTs)
LT = Sim("N",dLTm,dLTs)

ORT = 1/(
& 1/L*COSD(G)**4 +
& 1/T*SIND(G)**4 +
& (4/LT - 1/L - 1/T)*COSD(G)**2*SIND(G)**2
& )

HANK = L*T/(L*SIND(G)**2+T*COSD(G)**2)

DYN = ( ORT*SQRT(ABS(G))/SQRT(90.) + HANK*( SQRT(90.)-
& SQRT(ABS(G)) )/SQRT(90.) )

Stat = 0.175 + 0.222*DYN + 0.052*DYN**2

Sdev = SQRT( (1 + 0.0918553 - 0.0570712*dyn + 0.0144236*dyn**2 -
& 0.00145475*dyn**3 + 0.0000511008*dyn**4) * 1.064 )

RES = Sim("N",Stat,Sdev)

IF ( RES<0.05) THEN
RES=0.05

END IF

END FUNCTION TenMOE
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The Theta function 

Syntax:  Theta( α , β , ϕ’ , θ’ )

Description:  The Theta function, as a counterpart of the Fi function calculates the ring angle 

between a given strand and the load applied on PSL. For a description of the 

arguments, see Fi. Note that this function can be used to calculate θ for LVL 

layers, too, which can be regarded as PSL strands with α = 0° and β = 0°. (The Fi 

function can also be used in this way, but it will simply return ϕ’ as a result.) For 

the derivation of this calculation, see APPENDIX C. 

 

FUNCTION Theta(alf,bet,fip,thp) RESULT (res)

DOUBLE PRECISION :: res,alf,bet,fip,thp,gam

gam=SIND(fip)*COSD(alf)*COSD(thp)-COSD(fip)*SIND(alf)

res=ACOSD( (COSD(alf)*COSD(bet)*gam+SIND(bet)*SIND(fip)*SIND(thp))/
& ( SQRT(COSD(alf)**2*COSD(bet)**2+SIND(bet)**2) *
& SQRT(gam**2+SIND(fip)**2*SIND(thp)**2) ) )

END FUNCTION Theta
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APPENDIX F – RESULTS OF THE SIMULATION RUNS 
 
 
 
F.1 The properties of LVL 
 
 
 
Table F.1 – LVL thickness (mm) 

Sim. Mean STD Min. Max Skewness 
1 43.05 0.44 42.34 43.93 0.528 
2 42.81 0.55 41.88 43.90 0.238 
3 42.76 0.47 42.18 43.95 0.922 
4 42.86 0.61 41.96 44.01 0.507 
5 42.90 0.46 42.16 43.85 0.347 
6 43.04 0.34 42.26 43.49 -0.882 
7 43.02 0.59 42.14 44.05 0.356 
8 42.97 0.43 42.16 43.61 -0.159 
9 42.84 0.55 41.83 43.60 -0.244 
10 42.97 0.54 42.06 44.07 0.293 
11 43.01 0.56 41.79 44.05 -0.534 
12 43.05 0.52 42.20 44.35 0.625 
13 43.16 0.43 42.40 43.96 0.134 
14 42.94 0.36 42.12 43.46 -0.477 
15 43.31 0.54 42.30 44.01 -0.145 
16 42.85 0.59 41.61 43.70 -0.661 
17 42.70 0.49 41.52 43.49 -0.472 
18 43.03 0.53 42.10 44.00 0.097 
19 43.05 0.47 42.13 43.92 0.009 
20 42.94 0.49 41.91 43.66 -0.390 
Avg. 42.96 0.50 42.05 43.85 0.005 

Exp. 43.56 0.15 43.13 43.97 0.013 
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Table F.2 – LVL density (kg/m3)  Table F.3 – LVL Bending MOE – edgewise (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 511 10 492 533 0.145  1 12.76 0.32 12.33 13.67 1.214 
2 513 11 494 534 -0.065  2 12.89 0.40 11.97 13.76 -0.519 
3 514 8 493 525 -1.148  3 12.77 0.50 11.80 13.57 -0.336 
4 512 12 486 533 -0.073  4 12.82 0.41 12.15 13.64 0.252 
5 511 9 488 524 -0.696  5 12.71 0.42 11.93 13.29 -0.311 
6 512 8 496 528 -0.143  6 12.69 0.37 11.93 13.50 0.264 
7 512 9 496 526 -0.144  7 12.66 0.41 11.94 13.38 0.011 
8 512 11 492 537 0.260  8 12.80 0.48 11.90 13.74 0.030 
9 510 11 490 527 -0.207  9 12.57 0.37 11.94 13.24 -0.162 
10 513 11 496 539 0.479  10 12.71 0.43 12.10 13.37 0.196 
11 508 12 476 533 -0.356  11 12.62 0.53 11.72 13.36 -0.293 
12 510 6 497 519 -0.576  12 12.57 0.39 11.90 13.39 0.261 
13 511 14 492 536 0.431  13 12.62 0.52 11.77 13.65 0.101 
14 511 8 498 525 0.145  14 12.75 0.31 12.06 13.21 -0.339 
15 508 10 488 528 0.222  15 12.55 0.45 11.56 13.47 -0.254 
16 513 9 496 531 0.014  16 12.62 0.36 12.13 13.81 1.717 
17 517 9 488 529 -1.336  17 12.80 0.44 11.74 13.71 -0.322 
18 510 8 500 527 0.500  18 12.76 0.30 12.18 13.30 0.021 
19 512 10 490 533 -0.250  19 12.66 0.33 12.14 13.29 -0.118 
20 508 11 493 533 0.799  20 12.69 0.40 11.83 13.39 -0.153 
Avg. 511 10 492 530 -0.100  Avg. 12.70 0.41 11.95 13.49 0.063 

Exp. 566 11 541 584 0.078  Exp. 13.22 1.21 11.85 15.90 0.022 
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Table F.4 – LVL Bending MOE – flatwise (GPa)  Table F.5 – LVL Regression parameters 

Sim. Mean STD Min. Max Skew.  Sim. b0 b1 r2 
1 12.84 0.73 11.87 14.44 0.319  1 8.801 0.309 0.483 
2 13.21 0.99 11.20 15.20 -0.142  2 9.062 0.290 0.509 
3 13.17 0.91 11.23 15.02 -0.237  3 10.531 0.170 0.097 
4 13.12 0.94 11.31 14.48 -0.398  4 9.651 0.241 0.300 
5 13.26 0.63 12.06 14.77 0.530  5 7.486 0.394 0.356 
6 12.53 0.73 10.81 13.80 -0.036  6 9.279 0.273 0.299 
7 12.90 0.87 11.43 14.25 0.046  7 9.276 0.262 0.307 
8 13.04 0.80 11.57 14.27 -0.123  8 7.792 0.384 0.405 
9 13.00 0.75 11.59 14.47 0.066  9 9.238 0.257 0.277 
10 12.88 0.89 11.00 14.72 0.090  10 8.587 0.320 0.437 
11 12.81 0.70 11.88 13.87 0.058  11 7.413 0.406 0.287 
12 12.49 0.64 11.41 13.74 0.270  12 8.991 0.286 0.222 
13 12.92 0.86 11.00 14.76 -0.086  13 7.215 0.419 0.491 
14 12.82 0.63 11.77 13.99 0.116  14 11.086 0.130 0.069 
15 12.79 0.62 11.68 13.85 0.158  15 6.994 0.434 0.353 
16 12.87 0.65 11.13 13.89 -0.656  16 11.059 0.121 0.048 
17 12.84 0.96 11.15 15.09 0.336  17 9.559 0.253 0.309 
18 12.98 0.70 11.86 14.38 0.514  18 10.636 0.164 0.144 
19 12.73 1.03 10.58 14.84 0.260  19 10.453 0.173 0.300 
20 13.04 0.81 11.49 15.31 0.918  20 9.205 0.267 0.293 
Avg. 12.91 0.79 11.40 14.46 0.100  Avg. 9.116 0.278 0.299 

Exp. 13.36 0.72 12.20 15.16 0.212  Exp. 0.002 0.990 0.342 
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Table F.6 – LVL Compression Ex (GPa)  Table F.7 – LVL Compression Ey (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 11.20 0.37 10.59 11.67 -0.535  1 0.41 0.02 0.39 0.44 0.226 
2 11.30 0.40 10.76 12.13 0.463  2 0.41 0.01 0.40 0.43 -0.281 
3 11.40 0.70 10.00 12.42 -0.326  3 0.41 0.01 0.38 0.42 -0.485 
4 11.37 0.36 10.84 11.91 -0.005  4 0.42 0.01 0.40 0.43 0.173 
5 11.31 0.35 10.84 12.03 0.444  5 0.41 0.01 0.40 0.44 0.950 
6 11.37 0.45 10.83 12.17 0.435  6 0.41 0.01 0.39 0.43 0.740 
7 11.54 0.54 10.86 12.57 0.452  7 0.40 0.01 0.39 0.42 -0.155 
8 11.55 0.24 11.28 12.07 0.793  8 0.41 0.02 0.39 0.45 0.503 
9 11.47 0.41 10.87 12.02 -0.157  9 0.42 0.01 0.40 0.45 0.167 
10 11.13 0.56 10.43 12.21 0.431  10 0.41 0.02 0.38 0.44 0.095 
11 11.37 0.67 10.52 12.53 0.210  11 0.42 0.01 0.40 0.43 -0.061 
12 11.18 0.54 10.25 12.01 -0.059  12 0.41 0.01 0.39 0.43 0.490 
13 11.49 0.43 10.75 12.17 -0.214  13 0.40 0.01 0.38 0.42 0.012 
14 11.25 0.52 10.71 12.57 1.517  14 0.41 0.01 0.39 0.43 -0.086 
15 11.28 0.37 10.57 11.88 -0.330  15 0.41 0.01 0.38 0.43 0.469 
16 11.41 0.50 10.29 11.92 -0.983  16 0.40 0.01 0.38 0.42 -0.590 
17 11.39 0.36 10.74 11.97 -0.225  17 0.41 0.02 0.39 0.44 0.240 
18 11.00 0.52 10.23 11.73 -0.374  18 0.41 0.02 0.39 0.44 0.098 
19 11.37 0.46 10.65 12.02 -0.076  19 0.41 0.01 0.39 0.42 -0.740 
20 11.19 0.55 10.14 12.12 -0.167  20 0.40 0.01 0.38 0.42 0.398 
Avg. 11.33 0.46 10.61 12.11 0.065  Avg. 0.41 0.01 0.39 0.43 0.108 

Exp. 11.87 1.06 9.71 13.34 0.142  Exp. 0.44 0.03 0.41 0.44 -0.022 
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Table F.8 – LVL Compression Ez (GPa)  Table F.9 – LVL Compression °

°
0
45E  (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 0.80 0.04 0.74 0.86 -0.019  1 0.79 0.03 0.76 0.84 0.267 
2 0.83 0.04 0.79 0.90 0.499  2 0.80 0.02 0.77 0.82 -0.262 
3 0.81 0.04 0.76 0.87 0.606  3 0.79 0.02 0.74 0.82 -0.567 
4 0.84 0.05 0.75 0.89 -0.313  4 0.80 0.03 0.77 0.84 0.229 
5 0.81 0.03 0.78 0.86 0.340  5 0.79 0.03 0.77 0.85 0.968 
6 0.81 0.04 0.77 0.90 1.078  6 0.78 0.02 0.76 0.83 0.748 
7 0.82 0.02 0.80 0.86 0.698  7 0.78 0.02 0.75 0.80 -0.253 
8 0.83 0.02 0.79 0.85 -0.098  8 0.80 0.04 0.75 0.87 0.504 
9 0.82 0.04 0.75 0.89 0.167  9 0.81 0.02 0.77 0.86 0.139 
10 0.82 0.04 0.75 0.88 -0.187  10 0.79 0.03 0.74 0.84 0.097 
11 0.82 0.02 0.77 0.85 -0.469  11 0.80 0.02 0.77 0.83 0.026 
12 0.81 0.04 0.75 0.87 -0.025  12 0.79 0.02 0.75 0.83 0.612 
13 0.82 0.02 0.78 0.85 -0.304  13 0.77 0.02 0.74 0.81 0.023 
14 0.81 0.04 0.76 0.89 0.554  14 0.78 0.03 0.75 0.82 -0.056 
15 0.82 0.02 0.77 0.85 -0.691  15 0.78 0.03 0.74 0.83 0.449 
16 0.81 0.03 0.75 0.88 0.309  16 0.78 0.02 0.74 0.80 -0.726 
17 0.82 0.03 0.78 0.87 -0.152  17 0.79 0.03 0.76 0.84 0.271 
18 0.81 0.04 0.76 0.87 0.269  18 0.79 0.03 0.74 0.84 0.049 
19 0.82 0.03 0.76 0.87 0.045  19 0.79 0.02 0.76 0.81 -0.699 
20 0.81 0.04 0.77 0.88 0.609  20 0.77 0.03 0.74 0.81 0.367 
Avg. 0.82 0.03 0.77 0.87 0.146  Avg. 0.79 0.02 0.75 0.83 0.109 

Exp. 0.37 0.03 0.31 0.42 0.135  Exp. 0.87 0.07 0.76 1.01 0.004 
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Table F.10 – LVL Compression °

°
90
45E  (GPa)  Table F.11 – LVL Compression °

°
45
90E  (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 1.49 0.06 1.39 1.60 0.019  1 0.48 0.02 0.46 0.51 0.078 
2 1.55 0.07 1.47 1.66 0.485  2 0.50 0.02 0.48 0.53 0.553 
3 1.50 0.06 1.42 1.61 0.591  3 0.49 0.02 0.47 0.51 0.587 
4 1.55 0.08 1.40 1.65 -0.333  4 0.50 0.02 0.46 0.53 -0.344 
5 1.51 0.05 1.45 1.58 0.274  5 0.49 0.01 0.47 0.50 0.112 
6 1.52 0.06 1.44 1.66 1.029  6 0.49 0.02 0.47 0.53 0.858 
7 1.53 0.04 1.49 1.60 0.555  7 0.49 0.01 0.48 0.50 0.460 
8 1.54 0.04 1.48 1.59 -0.053  8 0.50 0.01 0.48 0.51 -0.072 
9 1.53 0.06 1.40 1.65 -0.034  9 0.50 0.01 0.48 0.53 1.207 
10 1.53 0.08 1.40 1.63 -0.190  10 0.49 0.02 0.46 0.51 -0.333 
11 1.52 0.04 1.45 1.57 -0.408  11 0.49 0.01 0.47 0.51 -0.410 
12 1.51 0.07 1.39 1.63 0.004  12 0.49 0.02 0.46 0.51 -0.299 
13 1.52 0.04 1.46 1.57 -0.331  13 0.49 0.01 0.47 0.50 -0.631 
14 1.51 0.07 1.41 1.64 0.486  14 0.49 0.02 0.46 0.52 0.424 
15 1.52 0.04 1.44 1.57 -0.759  15 0.49 0.01 0.47 0.50 -0.198 
16 1.51 0.06 1.41 1.64 0.290  16 0.49 0.02 0.46 0.51 0.211 
17 1.53 0.05 1.46 1.61 -0.061  17 0.49 0.01 0.47 0.51 -0.060 
18 1.50 0.07 1.42 1.61 0.316  18 0.49 0.02 0.46 0.52 0.423 
19 1.52 0.06 1.41 1.61 0.030  19 0.49 0.01 0.47 0.52 0.253 
20 1.51 0.07 1.44 1.62 0.570  20 0.49 0.02 0.47 0.51 0.577 
Avg. 1.52 0.06 1.43 1.61 0.124  Avg. 0.49 0.02 0.47 0.51 0.170 

Exp. 0.84 0.06 0.75 0.96 0.545  Exp. 0.29 0.05 0.23 0.35 0.112 
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F.2 The properties of PSL 
 
 
 
Table F.12 – PSL ΣAi (cm2) 

Sim. Mean STD Min. Max Skewness 
1 103.4 1.3 101.4 106.0 0.272 
2 103.8 1.3 101.7 106.2 0.024 
3 104.0 1.0 102.3 105.6 -0.014 
4 103.2 1.5 101.3 105.8 0.303 
5 104.3 1.8 101.1 106.4 -0.487 
6 103.9 1.6 101.2 106.3 -0.034 
7 104.0 1.2 101.9 106.4 0.575 
8 103.8 1.5 101.1 106.4 0.127 
9 103.9 1.7 101.3 106.3 -0.120 
10 103.6 1.2 101.4 106.3 0.203 
11 103.9 1.4 101.3 105.9 -0.490 
12 103.8 1.3 101.2 105.8 -0.386 
13 103.0 1.3 101.2 106.2 0.565 
14 103.8 1.5 101.5 106.1 -0.067 
15 104.5 1.2 101.7 105.9 -0.551 
16 103.7 1.2 101.2 105.9 -0.104 
17 103.5 1.7 101.2 105.7 0.050 
18 103.2 1.6 101.2 106.1 0.247 
19 103.3 1.3 101.5 106.2 0.392 
20 103.7 1.8 101.1 106.3 0.071 
Avg. 103.7 1.4 101.4 106.1 0.029 

Cross-section of the simulated beam: 106.5 cm2 
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Table F.13 – PSL ΣIi (cm4) – edgewise  Table F.14 – PSL ΣIi (cm4) – flatwise 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 1682 22 1648 1724 0.254  1 497.0 6.0 487.6 509.9 0.321 
2 1688 22 1651 1726 -0.055  2 498.4 6.8 486.8 511.2 0.043 
3 1691 16 1666 1718 0.128  3 499.9 4.8 490.5 507.1 -0.277 
4 1678 24 1647 1720 0.340  4 495.8 7.4 486.6 508.7 0.334 
5 1697 29 1643 1730 -0.521  5 501.5 8.8 485.5 512.7 -0.523 
6 1690 26 1646 1728 -0.021  6 499.4 7.8 486.5 510.9 -0.051 
7 1691 19 1658 1730 0.576  7 499.6 5.7 490.6 510.8 0.576 
8 1688 24 1645 1729 0.131  8 498.3 7.3 485.5 510.8 0.088 
9 1691 28 1648 1730 -0.095  9 499.3 8.3 486.0 511.1 -0.126 
10 1686 20 1649 1729 0.175  10 497.8 5.8 486.9 508.7 -0.031 
11 1690 22 1650 1723 -0.392  11 499.3 6.7 486.2 509.3 -0.478 
12 1689 20 1645 1721 -0.387  12 498.5 6.3 485.1 507.6 -0.569 
13 1675 21 1646 1727 0.612  13 495.0 6.1 485.7 509.7 0.542 
14 1689 24 1651 1728 -0.062  14 499.0 6.8 488.7 509.3 -0.005 
15 1699 21 1651 1725 -0.528  15 501.4 6.2 487.2 508.7 -0.564 
16 1686 19 1644 1722 -0.228  16 497.7 5.5 485.4 507.8 -0.269 
17 1683 27 1644 1720 0.003  17 496.8 7.9 486.0 508.4 0.097 
18 1679 26 1647 1725 0.245  18 495.7 7.8 486.0 509.6 0.277 
19 1680 23 1648 1727 0.306  19 496.7 6.2 488.4 510.6 0.476 
20 1687 29 1646 1730 0.090  20 498.2 8.3 486.7 511.2 0.152 
Avg. 1687 23 1649 1726 0.029  Avg. 498.3 6.8 486.9 509.7 0.001 

Edgewise moment of inertia of the beam: 1731 cm4  Flatwise moment of inertia of the beam: 515.1 cm4 
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Table F.15 – PSL density (kg/m3)  Table F.16 – PSL Bending MOE – edgewise 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 674 11 656 704 0.500  1 14.38 0.35 13.82 15.35 0.654 
2 673 10 654 690 -0.045  2 14.63 0.43 13.96 15.43 0.013 
3 671 10 648 686 -0.504  3 14.49 0.42 13.84 15.32 0.222 
4 671 12 652 695 0.145  4 14.43 0.37 13.83 15.17 0.142 
5 679 15 658 705 0.021  5 14.53 0.45 13.71 15.22 -0.087 
6 674 12 649 694 -0.262  6 14.55 0.31 14.10 15.04 0.133 
7 673 9 661 689 0.227  7 14.69 0.37 14.00 15.37 -0.025 
8 674 12 654 698 0.201  8 14.62 0.27 14.02 15.10 0.076 
9 675 13 652 701 0.267  9 14.63 0.39 13.45 15.11 -1.289 
10 670 8 655 683 -0.135  10 14.51 0.42 13.79 15.32 0.177 
11 674 13 647 699 -0.190  11 14.56 0.30 14.04 15.17 0.036 
12 674 11 652 694 -0.261  12 14.62 0.30 13.95 15.30 0.151 
13 669 12 645 694 0.200  13 14.50 0.40 13.68 15.43 0.060 
14 673 11 649 694 -0.266  14 14.57 0.64 13.49 15.65 0.016 
15 675 10 660 697 0.400  15 14.51 0.46 13.48 15.11 -0.852 
16 674 7 658 686 -0.167  16 14.55 0.34 13.87 15.14 -0.133 
17 674 12 643 691 -0.705  17 14.65 0.40 13.74 15.37 -0.290 
18 672 14 651 698 0.263  18 14.42 0.49 13.56 15.35 0.105 
19 673 11 652 690 -0.285  19 14.46 0.44 13.73 15.43 0.251 
20 671 13 645 696 -0.141  20 14.50 0.49 13.49 15.34 -0.404 
Avg. 673 11 652 694 -0.037  Avg. 14.54 0.40 13.78 15.29 -0.052 

Exp. 673 16 640 708 -0.122  Exp. 12.82 0.75 11.18 13.81 0.115 
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Table F.17 – PSL Bending MOE – flatwise (GPa)  Table F.18 – PSL Regression parameters 

Sim. Mean STD Min. Max Skew.  Sim. b0 b1 r2 
1 14.39 0.28 13.99 14.97 0.471  1 2.654 0.815 0.413 
2 14.32 0.45 13.23 15.11 -0.386  2 4.042 0.739 0.609 
3 14.38 0.37 13.77 15.22 0.389  3 11.991 0.174 0.024 
4 14.29 0.37 13.66 15.03 0.310  4 8.291 0.429 0.186 
5 14.53 0.32 14.05 15.13 0.102  5 0.270 0.982 0.504 
6 14.53 0.28 13.76 14.98 -0.725  6 8.503 0.417 0.148 
7 14.57 0.41 13.75 15.27 -0.298  7 6.586 0.556 0.395 
8 14.49 0.39 13.84 15.35 0.153  8 10.426 0.289 0.174 
9 14.63 0.24 14.07 15.07 -0.432  9 3.927 0.732 0.199 
10 14.49 0.29 13.89 15.11 0.021  10 8.141 0.439 0.090 
11 14.47 0.34 13.78 15.07 0.092  11 7.666 0.477 0.285 
12 14.54 0.38 13.60 15.37 -0.189  12 6.714 0.544 0.465 
13 14.33 0.30 13.74 15.09 0.565  13 2.693 0.824 0.368 
14 14.61 0.38 13.79 15.10 -0.530  14 -3.770 1.256 0.573 
15 14.51 0.28 13.87 15.00 -0.122  15 2.105 0.855 0.280 
16 14.44 0.29 14.07 14.96 0.367  16 4.021 0.729 0.393 
17 14.53 0.30 14.10 15.11 0.324  17 4.517 0.697 0.279 
18 14.38 0.42 13.76 15.21 0.487  18 4.365 0.699 0.371 
19 14.48 0.37 13.93 15.10 0.158  19 0.087 0.993 0.728 
20 14.36 0.27 13.94 14.76 0.066  20 -5.225 1.373 0.583 
Avg. 14.46 0.34 13.83 15.10 0.041  Avg. 4.400 0.701 0.353 

Exp. 12.57 0.57 11.64 13.92 -0.087  Exp. 5.901 0.551 0.171 
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Table F.19 – PSL Compression Ex (GPa)  Table F.20 – PSL Compression Ey (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 13.50 0.47 12.53 14.05 -0.868  1 0.55 0.02 0.51 0.56 -1.218 
2 13.26 0.23 12.89 13.66 0.167  2 0.54 0.02 0.52 0.58 0.456 
3 13.31 0.63 12.30 14.35 0.183  3 0.54 0.03 0.50 0.59 0.304 
4 13.48 0.41 12.60 14.11 -0.628  4 0.54 0.02 0.52 0.56 -0.055 
5 13.43 0.33 12.91 13.93 -0.327  5 0.54 0.01 0.52 0.56 0.211 
6 13.21 0.48 12.48 14.11 0.247  6 0.54 0.01 0.53 0.58 1.089 
7 13.34 0.26 12.85 13.63 -0.590  7 0.54 0.01 0.52 0.55 -0.941 
8 13.47 0.53 12.25 14.01 -1.030  8 0.54 0.02 0.51 0.56 -0.215 
9 13.37 0.48 12.51 14.35 0.239  9 0.54 0.01 0.51 0.57 -0.251 
10 13.09 0.42 12.36 13.65 -0.400  10 0.53 0.01 0.51 0.54 0.065 
11 13.35 0.55 12.53 14.01 -0.269  11 0.54 0.01 0.51 0.56 -0.398 
12 13.48 0.41 13.00 14.41 0.911  12 0.54 0.01 0.53 0.55 0.239 
13 13.25 0.51 12.62 13.89 0.021  13 0.54 0.01 0.53 0.55 0.313 
14 13.28 0.30 12.88 13.69 -0.025  14 0.54 0.02 0.51 0.56 -0.514 
15 12.99 0.46 12.33 13.94 0.606  15 0.54 0.01 0.51 0.56 -0.674 
16 13.49 0.50 12.66 14.23 -0.052  16 0.54 0.02 0.51 0.56 -0.280 
17 13.28 0.36 12.48 13.60 -0.938  17 0.54 0.02 0.52 0.56 -0.271 
18 13.57 0.39 12.98 14.18 -0.035  18 0.54 0.01 0.53 0.56 0.387 
19 13.24 0.50 12.38 13.85 -0.246  19 0.53 0.01 0.51 0.55 -1.580 
20 13.50 0.41 12.95 14.17 0.256  20 0.54 0.02 0.52 0.58 0.516 
Avg. 13.34 0.43 12.63 13.99 -0.139  Avg. 0.54 0.01 0.52 0.56 -0.141 

Exp. 13.20 2.09 10.71 17.28 0.128  Exp. 0.48 0.07 0.39 0.60 -0.221 
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Table F.21 – PSL Compression Ez (GPa)  Table F.22 – PSL Compression °
°

0
45E  (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 1.03 0.03 0.98 1.06 -0.802  1 1.07 0.05 0.96 1.14 -0.679 
2 1.02 0.04 0.96 1.09 0.378  2 1.07 0.04 1.02 1.13 0.263 
3 1.03 0.06 0.97 1.15 0.684  3 1.05 0.05 0.98 1.15 0.323 
4 1.02 0.03 0.97 1.07 0.205  4 1.06 0.03 1.01 1.10 -0.032 
5 1.02 0.04 0.96 1.06 -0.349  5 1.06 0.02 1.02 1.09 0.007 
6 1.04 0.03 0.99 1.10 0.171  6 1.06 0.02 1.02 1.10 0.187 
7 1.01 0.03 0.95 1.07 -0.079  7 1.06 0.03 1.00 1.10 -0.550 
8 1.02 0.02 0.97 1.05 -0.743  8 1.07 0.04 1.01 1.13 0.096 
9 1.04 0.02 1.00 1.07 -0.128  9 1.05 0.04 0.98 1.12 0.200 
10 1.01 0.04 0.95 1.05 -0.237  10 1.03 0.03 0.98 1.07 -0.500 
11 1.02 0.03 0.96 1.06 -0.801  11 1.06 0.04 0.99 1.13 -0.045 
12 1.01 0.03 0.97 1.07 0.293  12 1.06 0.03 1.03 1.13 0.659 
13 1.03 0.03 0.99 1.08 0.361  13 1.05 0.02 1.03 1.07 -0.484 
14 1.05 0.04 0.99 1.11 0.119  14 1.05 0.04 1.00 1.10 -0.446 
15 1.01 0.03 0.93 1.04 -1.180  15 1.06 0.03 1.01 1.11 0.067 
16 1.02 0.05 0.96 1.11 0.498  16 1.05 0.05 0.98 1.12 -0.053 
17 1.03 0.04 0.98 1.10 0.715  17 1.07 0.04 0.99 1.13 -0.448 
18 1.02 0.04 0.94 1.09 -0.216  18 1.05 0.04 1.00 1.11 -0.060 
19 1.04 0.02 1.00 1.07 -0.202  19 1.04 0.03 0.99 1.08 -0.268 
20 1.03 0.05 0.96 1.11 0.254  20 1.08 0.03 1.03 1.13 0.144 
Avg. 1.02 0.04 0.97 1.08 -0.053  Avg. 1.06 0.04 1.00 1.11 -0.081 

Exp. 0.23 0.03 0.19 0.28 -0.254  Exp. 1.08 0.11 0.86 1.25 -0.002 
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Table F.23 – PSL Compression °
°

90
45E  (GPa)  Table F.24 – PSL Compression °

°
45
90E  (GPa) 

Sim. Mean STD Min. Max Skew.  Sim. Mean STD Min. Max Skew. 
1 1.90 0.06 1.81 1.98 -0.536  1 0.64 0.02 0.61 0.66 -0.922 
2 1.89 0.07 1.78 2.00 0.245  2 0.64 0.03 0.61 0.68 0.219 
3 1.90 0.10 1.78 2.12 0.629  3 0.64 0.03 0.60 0.71 0.799 
4 1.88 0.04 1.82 1.94 0.189  4 0.64 0.01 0.61 0.66 -0.054 
5 1.89 0.06 1.80 1.95 -0.424  5 0.64 0.02 0.61 0.66 -0.214 
6 1.91 0.05 1.85 2.00 0.164  6 0.65 0.02 0.62 0.68 0.368 
7 1.88 0.06 1.77 1.98 -0.103  7 0.63 0.01 0.61 0.66 0.042 
8 1.90 0.05 1.80 1.97 -0.292  8 0.64 0.01 0.61 0.66 -0.456 
9 1.92 0.04 1.86 1.97 0.085  9 0.64 0.01 0.63 0.67 0.133 
10 1.86 0.07 1.77 1.96 -0.094  10 0.63 0.02 0.61 0.65 0.281 
11 1.89 0.06 1.78 1.96 -0.649  11 0.64 0.01 0.61 0.66 -0.459 
12 1.87 0.04 1.81 1.95 0.205  12 0.63 0.02 0.61 0.66 0.143 
13 1.90 0.05 1.83 1.98 -0.072  13 0.64 0.02 0.61 0.67 -0.048 
14 1.93 0.07 1.84 2.02 -0.012  14 0.65 0.02 0.62 0.67 -0.135 
15 1.86 0.05 1.73 1.91 -1.191  15 0.63 0.02 0.60 0.64 -1.028 
16 1.89 0.09 1.78 2.05 0.480  16 0.64 0.03 0.60 0.68 0.343 
17 1.90 0.07 1.82 2.04 0.846  17 0.64 0.02 0.62 0.69 0.569 
18 1.89 0.08 1.75 2.04 -0.004  18 0.64 0.02 0.60 0.68 0.070 
19 1.91 0.04 1.84 1.96 -0.412  19 0.64 0.02 0.61 0.66 -0.758 
20 1.92 0.08 1.81 2.05 0.237  20 0.65 0.02 0.61 0.69 0.407 
Avg. 1.90 0.06 1.80 1.99 -0.035  Avg. 0.64 0.02 0.61 0.67 -0.035 

Exp. 0.64 0.05 0.55 0.73 -0.100  Exp. 0.30 0.03 0.25 0.36 0.186 
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